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A B S T R A C T

During a pandemic or natural disaster, people may alter transit usage behavior due to perception
of changes in the environment. To effectively respond to these crises, it is important for
governments and public transit agencies to understand when these changes occurred and
how they were affected by relevant policies and responsive strategies. In this study, we
develop a methodological framework based on Bayesian online changepoint detection (BOCD)
to identify the occurrence time, direction, and persistency of changes in individual-level transit
usage. We demonstrate the effectiveness of this framework in informing government decision-
making in the context of COVID-19. Using Jeju Island, South Korea as a case study, we apply
the framework over a nearly two-year smart card dataset collected from the beginning of
2019 till nine months into the pandemic. By focusing on frequent transit users, we detect
when these users significantly changed their transit usage frequency during the pandemic and
identify several types of users who experienced different behavior change patterns. Besides
demonstrating the great heterogeneity in individual-level behavior changes, we perform a
regression analysis to further understand how these changes were affected by key government
policies (e.g., Risk alert, Social distancing, Public transit policy, and Eased social distancing).
Our results suggest that only certain sets of policies appear to have significant effects. In
particular, introducing Risk alert would cause a 277% to 317% increase in the number of
users who reduced transit usage frequency. Policies that eased social distancing, though, would
cause a 134% to 155% increase in the number of users with travel frequency increase. The
proposed BOCD framework enables a scalable solution to identifying and understanding changes
of individual transit behavior. The methodology and findings are beneficial for developing
targeted policies and interventions to facilitate daily travel and public transit operations during
public health crises.
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1. Introduction

During crises such as pandemics or natural disasters, individuals may adjust their transit usage behavior as responses to the
erceived changes in the environment (Ulfarsson et al., 2015; Liu et al., 2022; Ren et al., 2022). During a pandemic, for example,
ravelers may actively reduce transit usage to avoid exposure to the viruses in the confined spaces of buses and metros (Akim and
yivodji, 2020; Chen et al., 2022; Kaplan et al., 2022; Shortall et al., 2022). In the course of a natural disaster, certain populations
ould become more reliant on public transit systems given the various damages that limit their access to road infrastructure and
ther means of transportation (e.g., automobile). (He et al., 2021). Therefore, it is crucial to understand these behavior changes and
heir driving factors. Such knowledge could benefit the operation of transit systems during the crises, and inform decision makings
o improve resilience of the systems.

Existing studies have explored changes in people’s transit usage behavior during crises such as floods and pandemics (Abad
nd Fillone, 2018; Jenelius and Cebecauer, 2020; Wielechowski et al., 2020). However, most of the studies approach this question
hrough the means of collective behavior indicators, such as changes in the overall transit ridership (Jenelius and Cebecauer, 2020;
arker et al., 2021; Aydin et al., 2022; Wilbur et al., 2023). Although collective analysis could identify the general trends in travel
ehavior and provide a broad understanding of people’s transit use pattern, it does not investigate how the change occurred at the
ndividual level. A crisis may generate different impacts on travel behavior across individuals, and such impacts can be affected by
ocio-demographics, such as employment and income levels. Examining the disparity of individual behavior change is crucial for
overnments to develop personalized policies and interventions and alleviate social inequities. Individual-level analysis is capable of
xtracting occurrence time and persistency of behavior changes. An improved understanding of when an individual would change
he transit use behavior and how long the change would persist during a crisis can provide valuable insights to inform governments’
ecision-making. For example, the occurrence time of the changes allows for identifying individual travel patterns, preferences and
otivations. The change persistency is related to individuals’ risk perception and travel attitudes. Thus, the individual-level analysis

ould provide a nuanced understanding of crisis impacts and guide effective policy responses.
Scholars have also examined driving factors behind changes in transit use behavior, with a utilization of survey data in the

ajority of studies (Heiskanen et al., 2022; Sogbe, 2021; Kamga and Eickemeyer, 2021). They have revealed some crucial factors,
uch as people’s fear level and related policies during a crisis, providing valuable insights into the impact of a crisis on behavior
hanges (Kitchovitch and Liò, 2011; Lucchesi et al., 2022; Heiskanen et al., 2022; Kim et al., 2021; Mashrur et al., 2023). However,
urvey data often has limited spatio-temporal coverage. It is typically collected within a defined timeframe and geographic area,
hich may hinder studies of long-term and population-scale behavior changes. To mitigate the impact of the limitation, one approach

s to investigate individual behavior changes over large-scale human mobility datasets. These datasets, such as smart card data, often
ocument individuals’ travel behavior over an extended period and larger geographic areas, thereby expanding our understanding
f travel behavior change and its driving factors.

Given limited exploration of individual-level changes in transit usage behavior and their driving factors over large-scale datasets,
e develop a methodological framework to analyze individual behavior changes from human mobility data. The framework is based
n Bayesian online changepoint detection (BOCD), which is a statistical model to detect abrupt changes in time series data. It is
apable of identifying occurrence time, persistency and direction (e.g., increase or decrease in transit use) of behavior changes for
ach traveler. Based on the underlying distribution of individual mobility data, BOCD can effectively detect the changepoints, which
ndicate the occurrence time of the change (Habibi, 2021). The period between changepoints is referred to as characteristic period,
n which the individual use of public transit is relatively stable. Characteristic periods can be used to reflect the persistency of
eople’s behavior change. The difference in travel behavior between consecutive periods demonstrates the direction of the change,
hich suggests the trends and patterns of individual travel behavior over time.

We apply the proposed framework to investigate the impact of the pandemic-related policies on the change in individual transit
se behavior during COVID-19. The study area is Jeju Island, South Korea. The analysis focuses on an important group of transit users

frequent transit users who are highly reliant on public transit in their daily life (Vassallo et al., 2009; Esmailpour et al., 2022).
onsidering travel frequency as an important reflection of how users use public transit everyday, we use it as an indicator in BOCD
o detect individual behavioral changepoints. Based on the changepoints, we identify the occurrence time, characteristic periods,
nd direction of changes (i.e., increase or decrease in travel frequency) for each user, and subsequently analyze the change patterns
f them. Users are then classified into different categories based on their change patterns. For the users with multiple changepoints,
e calculate the behavioral change persistency based on the characteristic periods between two adjacent changepoints. Combined
ith the announcement timing of the pandemic-related policies (i.e., Risk alert, Social distancing, Public transit policy, and Eased

ocial distancing), we uncover the heterogeneous impact of policies on the changes in transit use among different individuals.
his study undertakes a retrospective analysis to examine the profound effects of policies on individuals’ transit use pattern in the
ontext of COVID-19. The findings unveil invaluable applicability of this framework in informing governmental decision-making
rocesses during a crisis. Notably, this approach enables the real-time change detection. This capability could support governments
nd authorities to respond swiftly and timely to align with the ever-evolving circumstances during a crisis.

. Literature review

The outbreak of a crisis always brings a dampening impact on mobility and transportation (Batomen et al., 2023; Godfrey et al.,
019). Public transit is always one of the most affected sections (Müller et al., 2020; Lin et al., 2023; Pitale et al., 2023; Wilbur
2

t al., 2023). By reporting results from a survey, Blendon et al. (2008) shown that 89% of participants indicated a limited usage of
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public transit during a pandemic influenza. According to a questionnaire survey, Sadique et al. (2007) found that 75% of participants
demonstrated that they would avoid public transit during Severe Acute Respiratory Syndrome (SARS). Kim et al. (2017) uncovered
that people’s travel frequency on public transit declined significantly during Middle East Respiratory Syndrome (MERS). By analyzing
a dataset provided by regional transport, Tiikkaja and Viri (2021) found that people reduced their transit use frequency and the
number of passengers of public transit decreased by 70% during the COVID-19 pandemic. Marra et al. (2022) revealed that in terms
of recurrent trips, people would reduce public transit use and switch to private vehicle. Transit use behavior of people is associated
with the severity of crises. Fathi-Kazerooni et al. (2020) revealed a strong correlation between people’s subway usage and pandemic
severity. Shelat et al. (2022) found that users adapted their travel behavior on public transit to the dynamics of pandemic situation.
The change in transit use behavior during a crisis varies with people’s socio-demographic characteristics. Jones and Salathé (2009)
demonstrated through an online survey that older individuals were more likely to avoid using public transit. Parker et al. (2021)
uncovered a lower reduction in public transit usage of the people with lower income. By applying smart card data and socio-
demographic data, Almlöf et al. (2021) showed that people with lower income and education level and from the areas with many
non-employment were more likely to use public transit during COVID-19. Some scholars studied the reasons behind changes in travel
behavior on public transit during a crisis. Aloi et al. (2020) demonstrated that people avoided using public transit during the COVID-
19 pandemic due to crowdedness and risk of contagion. This is consistent with the finding of Shelat et al. (2022), which indicated
that higher crowdedness, waiting time and infection rates would reduce the willingness of people to use public transit. Government
policies and countermeasures implemented by public transit agencies are also determinants of individuals’ transportation mode
choice. Sogbe (2021) identified several essential factors influencing commuters’ choice of public transit, including physical social
distancing, vehicle cleanliness, travel safety, and wearing of face masks. Chen et al. (2022) observed diverse reactions among
individuals towards the countermeasures introduced by the Dutch central government during COVID-19. Specifically, the older
and highly educated individuals were found to be more susceptible to enforcement measures, such as social distancing and mask
requirement, while young and single individuals displayed a greater openness towards non-compulsory measures, such as transit
vehicle disinfection.

While previous studies have made notable efforts to examine the behavior changes in people’s transit use behavior and the
nfluence of policies on these changes during a crisis, most of the studies investigate the changes from a collective perspective.
here is limited research that delves into individual-level analysis, specifically improving the understanding of when and how long

ndividuals would change their transit use pattern during a crisis. Moreover, most studies investigated the impact of policies on
ravel behavior by utilizing survey data. These studies provide valuable insights on users’ behavior change during a crisis. However,
urvey data is often collected within a limited time span and geographic areas. The limited coverage may restrict our understanding
f the long-term behavior change of various groups of population and the driving factors. To enhance the understanding, there is a
eed to develop effective and scalable approaches capable of identifying behavior changes from large-scale human mobility datasets
hich document more extensive information on travel behavior.

Changepoint detection is an effective technique for identifying abrupt changes within travel behavior data of individual
Aminikhanghahi and Cook, 2017). Depending on the timing of the detection, the changepoint detection approaches can be
ategorized into offline and online methods. The offline methods identify changepoints with a relatively high accuracy, but they lack
bility to detect changes in a timely manner (Reeves et al., 2007). The online methods detect changepoints in near real time, which
s a crucial capability for governments to capture dynamics of people’s transit use behavior promptly and respond rapidly during
crisis (Zhao et al., 2018b; Downey, 2008). Therefore, this study adopts an online method to support dynamic decision-making of

overnments in their emergency management.
Some scholars conducted an online changepoint detection by measuring the dissimilarity between reference data and test

ata. Appel and Brandt (1983) introduced the classical Generalized Likelihood Ratio to qualify the dissimilarity in probability
istributions between reference data and test data. As an improvement, Desobry et al. (2005) proposed a Kernel Change Detection
lgorithm, where the dissimilarity is measured according to an arc distance in feature space. However, several parameters
eed to be specified for a good performance in these dissimilarity-based methods. Instead of detecting changepoints based on
issimilarity, Adams and MacKay (2007) presented the BOCD approach, which outputs the probability of changepoints allowing
s to identify a changepoint based on different certainty levels. BOCD detects the change with data that can be seen so far. Thus,
he results of BOCD are robust. Zhao et al. (2018a) extended the BOCD method to detect the long-term individual travel pattern,
hich effectively detects the change at any given time for a behavior dimension. In this study, we propose a framework based on

he BOCD approach developed by Zhao et al. (2018a) to analyze the transit use pattern of frequent transit users during a crisis from
he individual perspective (Zhao et al., 2018a).

. Methodology

.1. Change detection of frequent transit users

Frequent transit users refer to those who rely heavily on public transit. They are a critical group for sustaining public transit
idership (Vassallo et al., 2009; Esmailpour et al., 2022). Understanding behavior changes of frequent transit users can assist transit
gencies and governments in developing appropriate policies and strategies to respond to crises. Moreover, frequent transit users
ften include vulnerable groups, such as essential workers, the low-incomes, and transit-dependent populations like seniors and
isables (Zuo, 2020). Understanding how their transit use behavior might change during a crisis is critical for implementing the
3

argeted policies and strategies to maintain their normal life, and accordingly, alleviating social inequalities (Brown and Williams,
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Fig. 1. Illustration of run length: (A) a time series of number of active days partitioned by two changepoints; (B) associated run length.

2023). In this study, frequent transit users are identified based on the number of active weeks, which refer to weeks where at least
one travel record of the user can be traced in the public transit system during normal conditions (such as the period before a crisis).
The users whose number of active weeks is not less than 𝐾 are considered as frequent transit users, and 𝐾 is determined based
on datasets and research objectives. Considering that people’s travel behavior change is mainly reflected in the travel frequency
dimension, we detect frequent transit users’ behavior change in terms of their transit use frequency. To capture the dynamics of
transit use frequency, we define a time series of the number of active days (𝑁𝑑𝑎𝑦). This metric represents the total count of days in
which a user engages with public transit during a specific time unit. To account for the effect of the day-of-week, we set the time
unit 𝑈 as 7 days.

With the time series 𝑁𝑑𝑎𝑦, we aim to identify when an abrupt change occurs. Such a change is referred to as a changepoint, and
can be detected using a changepoint detection algorithm. In this paper, we employ BOCD to detect the changepoints in the time
series of 𝑁𝑑𝑎𝑦 (Adams and MacKay, 2007; Zhao et al., 2018a). Let 𝑥𝑡 denote an observation of 𝑁𝑑𝑎𝑦 in week 𝑡. The value of 𝑥𝑡 is
basically determined by the daily decision of an individual regarding transit usage within the time unit 𝑈 . The output for each day is
a binary value. Specifically, the user chooses to use public transit on a given day is recorded as 1, while 0 otherwise. The frequency
of ‘‘1’’ occurrences within 𝑈 corresponds to 𝑥𝑡. This idea aligns with the concept of binomial distribution. Binomial distribution is
often employed to model the number of successes in 𝑛 independent experiments, where the output of each experiment is also binary.
Hence, we assume that 𝑥𝑡 follows a binomial distribution:

𝑃 (𝑥𝑡 = 𝑏|𝜃, 𝑈 ) =
(

𝑈
𝑏

)

𝜃𝑏(1 − 𝜃)𝑈−𝑏, (1)

where 𝑏 denotes the possible value of 𝑁𝑑𝑎𝑦 within a time unit, and 𝜃 is the probability that a user chooses to use public transit in a
day. 𝒙1∶𝑇 is a sequence of the observations from 𝑡 = 1 to 𝑡 = 𝑇 . We assume that 𝒙1∶𝑇 can be divided into non-overlapping partitions,
in which the data are i.i.d. samples obeying binomial distributions (Barry and Hartigan, 1992). The observation between any two
partitions is identified as a changepoint (as shown in Fig. 1A).

BOCD works by modeling the duration since the last changepoint, which is called the ‘‘run length’’. The run length in week 𝑡 is
denoted as 𝑟𝑡, which can be expressed as follows:

𝑟𝑡 =
{

0 if a changepoint occurs in week 𝑡
𝑟𝑡−1 + 1 otherwise. (2)

That is, 𝑟𝑡 will increase by one or drop to zero. As shown in Fig. 1, the time series is divided by two changepoints occurring at 𝑡 = 5
4

and 𝑡 = 10. As such, 𝑟𝑡 is added by one at each step when 𝑡 < 5 and 5 < 𝑡 < 10, and drops to zero when 𝑡 = 5 and 𝑡 = 10.
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Based on Bayesian inference, we assume that the predictive distribution of 𝒙 can be computed with a given 𝑟𝑡, as shown in
Eq. (3):

𝑃 (𝑥𝑡+1|𝒙1∶𝑡) =
∑

𝑟𝑡

𝑃 (𝑥𝑡+1|𝑟𝑡,𝒙
(𝑟)
𝑡 )𝑃 (𝑟𝑡|𝒙1∶𝑡), (3)

in which, 𝒙(𝑟) represents the observations associated with 𝑟𝑡. 𝑟𝑡 = 𝑟 means the last changepoint occurred 𝑟 weeks ago. Thus, only the
observations within last 𝑟 weeks would be considered when predicting 𝑥𝑡+1. The posterior distribution, 𝑃 (𝑟𝑡|𝒙1∶𝑡), is proportional to
the joint distribution:

𝑃 (𝑟𝑡|𝒙1∶𝑡) =
𝑃 (𝑟𝑡,𝒙1∶𝑡)
𝑃 (𝒙1∶𝑡)

. (4)

We write the joint distribution recursively:

𝑃 (𝑟𝑡,𝒙1∶𝑡) =
∑

𝑟𝑡−1

𝑃 (𝑟𝑡, 𝑟𝑡−1, 𝑥𝑡,𝒙1∶𝑡−1)

=
∑

𝑟𝑡−1

𝑃 (𝑟𝑡, 𝑥𝑡|𝑟𝑡−1,𝒙1∶𝑡−1)𝑃 (𝑟𝑡−1,𝒙1∶𝑡−1)

=
∑

𝑟𝑡−1

𝑃 (𝑥𝑡|𝑟𝑡, 𝑟𝑡−1,𝒙1∶𝑡−1)𝑃 (𝑟𝑡|𝑟𝑡−1,𝒙1∶𝑡−1)𝑃 (𝑟𝑡−1,𝒙1∶𝑡−1).

(5)

With the modeling assumptions, we simplify the equation as:

𝑃 (𝑥𝑡|𝑟𝑡, 𝑟𝑡−1,𝒙1∶𝑡−1) = 𝑃 (𝑥𝑡|𝑟𝑡,𝒙(𝑟)). (6)

Moreover, as shown in Eq. (2), the value of 𝑟𝑡 is independent of everything else when given 𝑟𝑡−1. Thus,

𝑃 (𝑟𝑡|𝑟𝑡−1,𝒙1∶𝑡−1) = 𝑃 (𝑟𝑡|𝑟𝑡−1). (7)

According to Eqs. (6) and (7), Eq. (5) can be written as:

𝑃 (𝑟𝑡,𝒙1∶𝑡) =
∑

𝑟𝑡−1

𝑃 (𝑥𝑡|𝑟𝑡,𝒙(𝑟))𝑃 (𝑟𝑡|𝑟𝑡−1)𝑃 (𝑟𝑡−1,𝒙1∶𝑡−1). (8)

In Eq. (8), 𝑃 (𝑟𝑡|𝑟𝑡−1) is called as the changepoint prior. We assume that

𝑃 (𝑟𝑡|𝑟𝑡−1) =

⎧

⎪

⎨

⎪

⎩

𝐻(𝑟𝑡−1 + 1) if 𝑟𝑡 = 0
1 −𝐻(𝑟𝑡−1 + 1) if 𝑟𝑡 = 𝑟𝑡−1 + 1
0 otherwise,

(9)

in which,

𝐻(𝜏) =
𝑓 (𝜏)
𝑆(𝜏)

. (10)

(𝜏) is a survival function:

𝑆(𝜏) = 𝑃 (𝑇 ≥ 𝜏) =
∞
∑

𝜏′=𝜏
𝑓 (𝜏′), (11)

which is generally used to demonstrate the likelihood of an object of interest, such as a patient or device, surviving past a certain
time. 𝑓 (𝜏) is the probability density function. 𝐻(𝜏) is a hazard function, which refers to the rate that an event of interest, such as
death or failure, is expected to occur at a specific time, given that the event has not happened before that time. As such, in this
framework, the hazard function demonstrates the probability that a changepoint will occur at 𝜏 given that it has not occurred by
un length 𝜏. When 𝑓 (𝜏) is a discrete exponential distribution with timescale 𝜆, 𝐻(𝜏) is a constant, 1∕𝜆.

As for the initial condition of the recursive algorithm, we assume that a changepoint occurred before the first observation. As
uch,

𝑃 (𝑟0 = 0,𝒙1∶𝑡 = ∅) = 1. (12)

ith assumption that 𝒙1∶𝑡 obeys binomial distribution, which is a member of exponential family distribution, 𝑃 (𝑥𝑡|𝑟𝑡,𝒙(𝑟)) can be
stimated based on beta-binomial distribution. The probability density function of beta distribution is shown as follows:

𝑃 (𝜃|𝛼, 𝛽) = 𝜃𝛼−1(1 − 𝜃)𝛽−1
𝛤 (𝛼 + 𝛽)
𝛤 (𝛼)𝛤 (𝛽)

, (13)

where 𝛤 is the Gamma function, and 𝛼 and 𝛽 are hyperparameters. According to Eqs. (1) and (13), we can get the beta-binomial
distribution:

𝑃 (𝑥𝑡|𝑈, 𝛼, 𝛽) =
𝛤 (𝑈 + 1)𝛤 (𝑥𝑡 + 𝛼)𝛤 (𝑈 − 𝑥𝑡 + 𝛽)𝛤 (𝛼 + 𝛽)

. (14)
5

𝛤 (𝑥𝑡 + 1)𝛤 (𝑈 − 𝑥𝑡 + 1)𝛤 (𝑈 + 𝛼 + 𝛽)𝛤 (𝛼)𝛤 (𝛽)
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As such, given 𝑟𝑡, the hyperparameters can be updated as:

𝛼(𝑟)𝑡 = 𝛼𝑝𝑟𝑖𝑜𝑟 +
∑

𝑡′∈𝑟𝑡

(𝑥𝑡′ ), (15)

𝛽(𝑟)𝑡 = 𝛽𝑝𝑟𝑖𝑜𝑟 +
∑

𝑡′∈𝑟𝑡

(𝑈 − 𝑥𝑡′ ). (16)

It is worth noting that the changepoint detected by BOCD only detects the latest changepoint. We use 𝑦𝑢,−𝑘 = 1 to denote that the
observation at time 𝑢 is the 𝑘th latest changepoint. In other words, the BOCD algorithm can only detect 𝑃 (𝑦𝑢,−1 = 1|𝒙1∶𝑡). However,
we want to find out the possibility that the observation at time 𝑢 is a changepoint, denoted as 𝑃 (𝑦𝑢 = 1|𝒙1∶𝑡), not just a latest
hangepoint. According to marginal theorem, 𝑃 (𝑦𝑢 = 1|𝒙1∶𝑡) can be obtained as follows:

𝑃 (𝑦𝑢 = 1|𝒙1∶𝑡) =
∑

𝑘
𝑃 (𝑦𝑢,−𝑘 = 1|𝒙1∶𝑡). (17)

Moreover, based on the marginal theorem and chain rule in the probability theory, 𝑃 (𝑦𝑢,−𝑘 = 1|𝒙1∶𝑡) can be calculated as follows:

𝑃 (𝑦𝑢,−𝑘 = 1|𝒙1∶𝑡) =
𝑡−𝑘+1
∑

𝑣=𝑢+1
𝑃 (𝑦𝑣,−(𝑘−1) = 1|𝒙1∶𝑡)𝑃 (𝑦𝑢,−𝑘 = 1|𝑦𝑣,−(𝑘−1) = 1,𝒙1∶𝑡)

=
𝑡−𝑘+1
∑

𝑣=𝑢+1
𝑃 (𝑦𝑣,−(𝑘−1) = 1|𝒙1∶𝑡)𝑃 (𝑟𝑣−1 = 𝑣 − 𝑢 − 1|𝒙1∶𝑣−1).

(18)

Thus, in a given week, the possibility that the observation is a changepoint can be estimated by BOCD and Eqs. (17) and (18) (Zhao
et al., 2018a). The procedure of the changepoint detection algorithm is shown in Fig. 2.

3.2. Change pattern characterization and quantification of behavioral change persistency

A crisis might bring about diverse changes patterns of frequent transit users’ travel behavior. During the COVID-19 pandemic, for
example, some users reduced travel due to fear of contracting the virus, while others increased. Increase in travel frequency can be
attributed to these users being essential workers, who were required to serve the public in-person, such as nurses, retail workers, etc.
Some particularly sensitive users also modified the travel behavior constantly in response to dynamics of the pandemic situation.

To characterize the change patterns, we segment the time series of 𝑁𝑑𝑎𝑦 into characteristic periods based on the derived
changepoints. Each changepoint is linked to two periods (before vs. after). By analyzing the difference in the average 𝑁𝑑𝑎𝑦 during the
haracteristic periods before and after the changepoint, we denote the changepoint as ‘‘UP’’ (𝑈) or ‘‘Down’’ (𝐷) point. Specifically,

when the average 𝑁𝑑𝑎𝑦 during the period after the changepoint is larger than it during the period before the changepoint, we
denote the changepoint as 𝑈 . Otherwise, the changepoint is denoted as 𝐷. Since we focus on users’ travel behavior change during

crisis, we only take into account the changepoints during the crisis when characterize users’ change pattern. Fig. 3 shows three
xamples of the change pattern characterization. The horizontal and vertical axes in the figure represent dates and hours of each
ay, respectively. The color coding describes a user’s daily transit use. Light blue signifies no public transit use on the given day.
ark blue indicates the use of public transit on the day, while green denotes the specific hour of transit use. The vertical lines
n the top of each sub-figures represent the changepoint detected by employing BOCD. Specifically, the orange lines denote the
hangepoints before the crisis period, while the red lines represent the changepoints during the crisis period. User 1 in Fig. 3 has
sequence of 𝐷-𝐷 for the average 𝑁𝑑𝑎𝑦 decreasing from 5.29 to 1.89 and further down to 0. User 2 and User 3 have sequences of
-𝑈 and 𝐷-𝑈 -𝐷, respectively, based on the differences in the average 𝑁𝑑𝑎𝑦 between each two consecutive characteristic periods. As

such, for each user, we get a string with 𝑈 and 𝐷 to reveal his/her adjustment of travel behavior on public transit during a crisis.
For users with multiple changepoints during the crisis period, we identify all pairs of adjacent changepoints. The durations

between the adjacent changepoints can provide valuable insights into the persistency of users’ behavior change. Considering that
different combinations of adjacent changepoints reflect distinct processes of behavior change and travel decision-making, we classify
them into four patterns, including 𝑈 -𝑈 , 𝑈 -𝐷, 𝐷-𝑈 , and 𝐷-𝐷. We then analyze the change persistency for each of these patterns
ndividually.

. Case study

.1. Dataset

This study utilizes a large-scale smart card dataset from Jeju Island. Jeju Island, shown in Fig. 4, is the largest island in South
orea with more than 600,000 population. The public transit system in this island only contains bus, and there is no metro. The

otal number of bus stations is 2922. The smart card dataset captures 84 million transit trips of 2,585,507 users from January 7,
019 to October 4, 2020. Each record documents the departure timestamp and station ID. Considering the public holiday, annual
eave and summer and winter holidays, we set 𝐾 = 40 to filter the frequent transit users, which results in a subset of 58,088 users

with 30,609,438 records. That is, users who used public transit not less than 40 weeks in 2019 account for 2.25% of all users. These
6

users contributed approximately 36% of the total records.
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Fig. 2. Procedure of changepoint detection.

The nearly two-year smart card data records the travel behavior of frequent transit users in 91 weeks, which cover the period
efore and during COVID-19. Fig. 5 shows the timeline of COVID-19 in South Korea and Jeju. On January 3, 2020, National Infectious
isease Risk Alert Level (NIDRAL) was declared to ‘‘Level 1’’. After the first case was reported in South Korea on January 20, the
IDRAL was raised to ‘‘Level 2’’ and rapidly raised to ‘‘Level 3’’ on January 27. A religious gathering in Daegu led to a significant

ncrease in the daily number of confirmed cases from February 19 and rapidly increased to 909 cases during the following period.
he government introduced some measures to control the spread of the virus. On February 23, NIDRAL was raised to the highest

evel — ‘‘Level 4’’. Social distancing was introduced on February 29, followed by an enhanced social distancing announced on March
2. Public transit agency in Jeju Island also changed the bus schedule on some routes since April 11 and 12. By mid April, the daily
onfirmed cases were consistently below 50. In late-April and early May, the governments in South Korea gradually relaxed social
istancing. In mid and late May, schools reopened at varied grade levels. However, another religious gathering in mid August rose
he number of confirmed cases again. To flatten the curve, the governments introduced social distancing measure Level 2 across the
ountry on August 23. Until the early October, the daily confirmed cases were below 100. The first case reported in Jeju was on
7
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Fig. 3. Examples of change pattern characterization of users’ transit use frequency. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. The study area of Jeju, South Korea.

February 22. Without occurrence of a large-scale outbreak, the total number of cases was 59 between January 20 and October 4.
To investigate the impact of pandemic-related policies on transit use behavior, the policies implemented from January 1 to October
4, 2020 are grouped into four categories, namely, Risk alert, Social distancing, Public transit policy, and Eased social distancing, as
shown in Fig. 5.
8



Transportation Research Part A 181 (2024) 104003Y. Lin et al.

4

d
f
r
2
t
u
a
p
E

d
d
c
d
‘

Fig. 5. Key government policies introduced during the study period in South Korea.

Fig. 6. Number of changepoints with travel frequency increase (𝑈) and decrease (𝐷) in each week before and during COVID-19.

.2. Changepoints: Temporal evolution and interpersonal variations

Based on the empirical data, we provide additional validation for our assumption that 𝑁𝑑𝑎𝑦 of each user follows a binomial
istribution, as shown in Appendix A. Then, the changepoints of each frequent transit user are detected according to the proposed
ramework, with 𝛼𝑝𝑟𝑖𝑜𝑟 = 0.5, 𝛽𝑝𝑟𝑖𝑜𝑟 = 1, and 𝜆 = 30 (Zhao et al., 2018a). For detailed sensitivity analysis of the parameters, please
efer to Appendix B. Fig. 6 demonstrates the distribution of the number of Up points and Down points in each week from January 1,
019 to October 4, 2020. With users’ travel pattern in 2019 as a reference, the distinct travel patterns during COVID-19 suggested
hat some pandemic-related factors affected the transit use behavior. Compared to 2019, there were more users reduced their transit
se frequency in each week during the pandemic. In early 2020, when the NIDRAL was rapidly raised from ‘‘Level 1’’ to ‘‘Level 4’’,
considerable number of users decreased the travel frequency. Despite the implementation of Social distancing and Public transit

olicy during the following period, the number of users who reduced travel frequency did not increase further. When implementing
ased social distancing, a number of users increased travel frequency.

According to the changepoint sequence of each user, we identify the frequent transit users exhibiting different change patterns
uring the pandemic. As shown in Fig. 7, users are classified into ‘‘No changepoint’’ (47%), ‘‘Always increase’’ (32%), ‘‘Always
ecrease’’ (4%), and ‘‘Mixed patterns’’ (17%). ‘‘No changepoint’’, which is the largest category, denotes the users with no significant
hange in transit use frequency during the pandemic. ‘‘Always increase’’ indicates that the users increased public transit usage
uring the pandemic. In ‘‘Always increase’’, 97% of the users increased their travel frequency once during COVID-19. Similarly,
9

‘Always decrease’’ denotes that the users decreased transit use frequency during the pandemic. Among the users in this category,
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Fig. 7. Distribution of frequent transit users with different behavior change patterns.

1% experienced a single decrease during COVID-19, while 9% experienced two decreases. ‘‘Mixed patterns’’ depicts that the users
emonstrated fluctuations in their transit use frequency during the pandemic, with both increases and decreases observed. The most
ommon change sequences in ‘‘Mixed pattern’’ are 𝐷-𝑈 (33%), 𝑈 -𝐷 (25%), and 𝐷-𝑈 -𝐷 (22%).

The various categories of users highlight the heterogeneity of the policies impact on users’ transit use behavior. Although users
ere subjected to similar external influences, such as the dynamics of the pandemic severity and the implementation of the policies,

heir adjustment to the transit use behavior was different. The varying responses to the pandemic and the policies might be due to
he endogeneity of the users. By combining with users’ socio-demographic information, the endogenous factors affecting the users’
ransit use behavior could be uncovered, which is crucial for developing targeted policies and alleviating social inequality (Lin et al.,
022).

.3. Occurrence and persistency of behavior changes

Fig. 7 reveals that a significant number of frequent transit users experienced multiple changes during the pandemic period. As
uch, we identify the adjacent changepoints of these users and analyze the duration of characteristic periods between each pair of
djacent changepoints. Fig. 8 shows the duration and key occurrence time of adjacent changepoints for different patterns, namely
-𝑈 , 𝐷-𝐷, 𝑈 -𝐷, and 𝑈 -𝑈 . The dot symbols in the arc diagrams represent time, where each dot corresponds to one week. The

first and second rows of dots represent the initial and subsequent occurrences of adjacent changepoints. The dot size indicates the
percentage of the changepoints compared to the total number of adjacent pairs in the pattern. The color of the dots signifies the
policies implemented during that specific week. The arcs connect the initial and subsequent points of the adjacent pairs at their left
and right ends. The thickness of the arcs represents the percentage of adjacent changepoints occurring in the two corresponding
weeks relative to the total number of adjacent changepoints in the pattern.

According to Fig. 8, we find that the pandemic situation and policies introduced by the government led to a significant change
in travel frequency of frequent transit users. As for the pattern — decreasing first followed by an increase (𝐷-𝑈), most of the
users reduced the travel frequency when Risk alert was implemented. The decreased transit usage persisted until the government
announced Eased social distancing, when many users returned to the public transit system. Different from the 𝐷-𝑈 pattern, the key
ccurrence time and behavior change persistency of the consecutive decreasing pattern (𝐷-𝐷) exhibited an association with Risk
lert, Social distancing, and the outbreak of the pandemic. Some users reduced travel frequency on public transit in accordance with
he implementation of Risk alert during the early stage of the pandemic in South Korea. A number of users decreased the transit
se at the start of the two outbreaks in South Korea or the time of the related policies issued, i.e., Risk alert and Social distancing.
he pattern — rising first followed by a decrease (𝑈 -𝐷) — predominantly emerged when Eased social distancing was introduced
nd the 2nd outbreak began. There was no apparent key occurrence time and persistency of travel frequency change observed for
he pattern of consecutive increase (𝑈 -𝑈).

As shown in Fig. 9, the average change persistency in the pattern 𝐷-𝑈 was 11.96 weeks and the variance was 53.31. Most changes
n this pattern lasted for no more than 21 weeks, which was the time interval between the introduction of Risk alert (on January
, 2020) and Eased social distancing (in early May, 2020). The average change persistency and variance of the 𝐷-𝐷 pattern were
2.92 weeks and 79.54, respectively. The majority of changes in this pattern lasted for less than 10 weeks, and the variance was
uch higher than that in the 𝐷-𝑈 pattern, indicating a wider spread and diversity among the changes in 𝐷-𝐷 pattern. The average
ersistency of behavior change for the 𝑈 -𝐷 pattern was 10.89 weeks with variance of 48.37. Changes in this pattern mostly lasted
or no more than 15 weeks, which was approximately the time interval between the announcement of Eased social distancing (in
arly May) and the 2nd outbreak, and the introduction of Social distancing on 23 August. For the 𝑈 -𝑈 pattern, the average change
ersistency was 10.84 weeks and the variance was 50.73, with 12% of changes in this pattern lasted for 2 weeks.

From the collective perspective, we find that the change in users’ transit use frequency lasted for an average of two to three
onths, regardless of the change pattern and the timing of the policy announcement. However, delving deeper into an individual-

evel analysis of transit use can allow researchers to better understand the case-to-case implications and effects of these policy
10

hanges. The above-mentioned may partly explain why it is important to analyze the change in individual-level transit use behavior.
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Fig. 8. Occurrence time of adjacent changepoints for users with different behavior change patterns: (A) 𝐷-𝑈 ; (B) 𝐷-𝐷; (C) 𝑈 -𝐷; (𝐷) 𝑈 -𝑈 .

Fig. 9. Distribution of characteristic period duration between adjacent changepoints with different patterns: (A) 𝐷-𝑈 ; (B) 𝐷-𝐷; (C) 𝑈 -𝐷; (𝐷) 𝑈 -𝑈 .
11
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Table 1
The regression results of policy impacts on the number of changepoints.

Change direction Time lag (day) 𝑅2 𝑃
Factors

Intercept 𝑅𝐴 𝑆𝐷 𝑃𝑇𝑃 𝐸𝑆𝐷 𝐶𝑎𝑠𝑒𝐽

Up (travel frequency increase)

7 0.34 0.014 −0.09 −0.46 0.03 −0.27 1.36∗∗∗ −0.05
14 0.56 0.000 −0.26 −0.37 0.25 −0.35 1.55∗∗∗ −0.05
21 0.53 0.000 −0.16 −0.47 0.38 −0.49 1.42∗∗∗ −0.09
28 0.52 0.000 −0.36 −0.30 0.44 0.05 1.34∗∗∗ −0.07

Down (travel frequency decrease)

7 0.48 0.000 1.33 2.92∗∗∗ 0.41 −0.23 −0.25 −0.16
14 0.53 0.000 1.03 2.77∗∗∗ 0.21 0.07 −0.21 −0.09
21 0.67 0.000 0.64 3.17∗∗∗ −0.16 0.34 −0.06 0.01
28 0.64 0.000 0.84 2.92∗∗∗ −0.67 0.58 −0.43 0.02

Note: * significant at 0.1 level, ** significant at 0.05 level, and *** significant at 0.01 level.

Based on the average persistency of users’ behavior change, the policymakers and public transit agencies can better predict users’
transit use and travel demand, which is crucial for effective public transit planning and emergency management. By leveraging
insights derived from the individual persistency, policymakers can enhance their understanding of the impact and duration of
specific policies on users’ behavior changes. This knowledge empowers governments to effectively assess and optimize polices,
thereby improving the overall effectiveness and efficiency of public transit system.

4.4. Policy impacts on the observed changes

The aforementioned findings suggest the potential influence of policy announcement on the change in the travel frequency of
requent transit users. In this section, we aim to quantify this influence by conducting regression analyses. The independent variable
𝑖,𝑗 is binary for the policies of Risk alert, Social distancing, Public transit policy, and Eased social distancing. More specifically, if a
olicy 𝑖 is announced at week 𝑗, then we set the binary variable 𝑧𝑖,𝑗 = 1; additionally, we also take the hysteretic nature of the policy
nnouncement into consideration. For example, if the time lag is 7 days, then both 𝑧𝑖,𝑗 , 𝑧𝑖,𝑗+1 are set by one. We will conduct the
ensitivity analysis to determine the optimal time lag. To control for the impact of the local pandemic on users’ behavior change,
he daily new cases in Jeju is included as an independent variable considering with the same time lag in each regression model.
egression analyses were conducted separately for the number of Up points and Down points as dependent variables to investigate

he impact of policy announcement on the separate aspects of users’ transit use behavior. To eliminate the impact of seasonality on
he behavior change, the number of Up points and Down points were processed using the year-over-year method.

Table 1 illustrates the association between the change in travel frequency of frequent transit users and the pandemic-related
olicies, in which RA, SD, PTP, and ESD denote Risk alert, Social distancing, Public transit policy, and Eased social distancing,
espectively. Case𝐽 , which is used to control the impact of the local spread on the users’ travel behavior, represents the weekly new
ases in Jeju. According to the regression results, we find that Eased social distancing would significantly promote more users to
ncrease the transit usage. The implementation of Eased social distancing resulted in a 134% to 155% increase in the number of
sers who increased transit use frequency relative to the same period in 2019. Risk alert had a significant impact in encouraging
ore users to reduce the travel frequency on public transit. Compared to the corresponding period in 2019, the implementation

f Risk alert could lead to the number of users who reduced transit use frequency increasing by 277% to 317%. Other polices,
.e., Social distancing and Public transit policy, did not exhibit a significant association with the change in users’ travel frequency.

Fig. 10 summaries the key findings of the regression analyses, which show that different polices had various effects on users’
ransit use frequency during COVID-19. Specifically, Risk alert and Eased social distancing had a significant impact on users’ change
n travel frequency, while other policies and local spread had an insignificant effect. A few reasons might explain the results.
eju Island did not experience a large-scale outbreak during COVID-19, which might partially explain why the local cases had
n insignificant impact on users’ behavior change. Thus, the policies and national outbreak could be important signals for the users
n Jeju to evaluate the severity of the pandemic before travel decision. Combining timely policy interventions with national outbreak
ould assist users in evaluating infectious risk and adapting their transit usage behavior accordingly. If the implementation of policies
agged behind the outbreak of the pandemic, the users would adjust their travel behavior based on the national pandemic situation.
isk alert policies were introduced both before and shortly after the outbreak of the pandemic, while Social distancing and Public

ransit policy were not implemented until some time after the outbreak of the pandemic. As such, many users adjusted their travel
ehavior when the pandemic rapidly spread and Risk alert were introduced. The implementation of Social distancing and Public
ransit policy did not result in a substantial number of users changing their travel behavior. In addition, the introduction of the
ublic transit policy was to reschedule some routes, most of which were tourist routes. This might be another explanation for the
nsignificant impact of Public transit policy on changes in users’ transit use frequency. Unlike the sudden onset of an outbreak,
latten the curve could be a gradual process. During the period when the national pandemic returning to the stability, the users
ight not make an abrupt change based on the pandemic situation. The policies, i.e., Eased social distancing, were signals for the
sers to perceive a reduced risk, leading some users to significantly increase the use of public transit.

In addition, the results exhibit that Eased social distancing and Risk alert produce the highest explanatory power for the change
12

n travel frequency of frequent transit users when the time lag is 14 and 21, respectively. For many frequent transit users, such
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Fig. 10. Pathways of the policy impacts on changes of individual transit usage.

s seniors and the disables, public transit could be an essential transportation mode in their daily life. Reducing the use of public
ransit for them could have a significant impact on their daily lives, as well as increased the cost of living. After perceiving the
isk signaled by the policies, they might spend more time weighting the trade-offs between personal safety and maintaining their
ormal routine, or finding alternative transportation modes to continue daily activities. When official safety signals were released,
hose who had been struggling to find solutions for the affected lives might quickly return to the public transit system. Moreover,
he implementation of Risk alert conveyed some infectious risk signals to people without imposing restrictions or requirements
n people’s travel behavior. Eased social distancing contained the policies of school reopening, which was a stronger signal that
timulates travel demand from people, such as teachers, students, and parents. As a result, compared to Risk alert, some users
hanged the travel behavior in a relatively short time after the announcement of Eased social distancing.

. Discussion and conclusion

This paper develops a framework based on Bayesian online changepoint detection (BOCD) to investigate changes in individual-
evel transit usage behavior during a crisis. The framework is capable of identifying the occurrence time, direction (i.e., increase
s. decrease) of the behavior changes, as well as how long these changes tended to persist during a crisis. With the integration of
dditional information (e.g., the dynamics of the crisis and the policies), the potential causes and duration of the causes’ effects can
e uncovered, which is critical for emergency management and public transit operation to ensure people’s safety and basic travel
emand during a crisis.

The proposed framework was employed to examine the impact of pandemic-related policies on individual transit use behavior
uring COVID-19 using Jeju Island, South Korea as a case study. In this study, we focused on frequent transit users which represent
n important group of transit users that relied heavily on public transit when there was no pandemic. Through the changepoint
nalysis, we were able to uncover several types of users — for example, those who had no change point (47%), and those who
ctively reduced (32%) or even increased (4%) their transit usage frequency during the pandemic period. A notable fraction of
sers had mixed patterns (17%), meaning that each of these users had multiple significant changes, among which some referred to
ravel frequency increase, while others being travel frequency decrease.

Given a transit user, any two consecutive changepoints allow us to observe how long the behavior change tended to persist. Thus,
or the users with multiple changepoints, we analyzed their persistency of changes in transit use frequency. The two consecutive
hanges indicate the processes of behavior change and travel decision-making. To gain insight into various effects of the pandemic-
elated policies on the changes and decision-making processes, we analyzed the key occurrence time and persistency of several
hange patterns in travel frequency — consecutive decrease (𝐷-𝐷) and increase (𝑈 -𝑈), decrease followed by increase (𝐷-𝑈), and
ncrease followed by decrease (𝑈 -𝐷). The results shown that a large number of significant behavior changes occurred within a short
imeframe of the policy announcement, which subsequently affected the individual change persistency.

We conducted regression analyses to further quantify the impact of the policies on users’ behavior changes during COVID-19.
he results shown that certain policies, such as Risk alert and Eased social distancing, had a significant impact on behavior changes
uring the pandemic, while the impact of other policies and the local COVID-19 cases was insignificant. The implementation of
ased social distancing resulted in a 134% to 155% increase in the number of users’ who increased the transit use frequency during
OVID-19 relative to the same period in 2019. The introduction of Risk alert significantly affected users’ behaviors to decrease
he transit use frequency. It resulted in a 277% to 317% increase in the number of users who decreased travel frequency during

2

13

OVID-19 compared to the same period in 2019. Moreover, according to the 𝑅 in the regression models with different time lag,
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we found that Risk alert might have a relatively shorter lag time to affect users’ transit use frequency compared to Eased social
distancing.

Several policy implications can be drawn based on the findings. Firstly, users with different patterns of behavior changes
xhibit diverse responses of individuals to the pandemic and the related policies, which may be attributed to socio-demographics.
overnments should pay attention to heterogeneity of individuals when develop policies. Personalized and targeted polices and
ountermeasures are needed to alleviate social inequity. Furthermore, the change persistency analysis reveals that individuals tend
o maintain their altered transit use behavior for a period of two to three months before making the next change. This duration
an serve as a useful indicator for governments to predict the impact of policies and forecast the demand for public transit. From
he individual perspective, we observe various impacts and implications of these policies. Therefore, it is crucial for governments to
onduct specific policy analyses and combine the results from the collective perspective to enhance policy evaluation and improve
ransit management. Finally, the regression analysis highlights the significant and lagged impacts of policies on individuals’ transit
se behavior. During a crisis, people’s perception and policy constraints would reduce their transit use. Conversely, in the recovery
hase of the crisis, which is often gradual and slow, governments’ policies act as a strong safety signal to encourage users return
o public transit system. Therefore, governments should employ effective policies to control the crisis and facilitate the recovery of
ublic transit.

Based on the empirical study in the context of COVID-19, we have found that our framework is practical and applicable
or informing policy-making. By detecting the changepoints in transit usage behavior for each user, the framework is capable
f explaining the important time points of the change in people’s transit use, and subsequently, could help us identity the key
actors that influence people’s change in transit use behavior during a crisis. Policymakers and public transit agencies can use this
nformation to develop targeted policies that minimize negative impacts on public transit system, ensuring the safety and basic
ravel needs of people. Moreover, with the changepoint sequence of each user, we can identify several categories of users based on
heir change patterns. The endogenous factors affecting users’ transit use behavior change could be further uncovered by analyzing
he change pattern of different categories of users combined with their socio-demographics. Based on the endogenous factors, public
ransit agencies could develop some personalized service for different users. Finally, the knowledge of the behavioral persistency is
n essential information for predicting people’s future transit use behavior and travel demand to optimize public transit planning
nd transportation system management during and after a crisis.

To our best knowledge, this study is the first attempt to analyze individual-level transit usage behavior change during a crisis
y employing BOCD. The current research can be extended from several aspects. Firstly, people’s transit use behavior change
an be quantified from multiple perspectives, such as travel frequency, spatial and temporal diversity. In this study, we focus
n the change in travel frequency. The future works can uncover the transit use behavior change in multiple dimensions to help
s gain a more comprehensive understanding of users’ behavior change (Kusakabe and Asakura, 2014; Zhao et al., 2018a). For
xample, the understanding of the change in spatial and temporal diversity is useful to infer which types of travel (e.g., commute
nd leisure travel) are most affected. Secondly, by leveraging additional data, this framework enables analyzing the changes in
ransit use behavior from different perspectives. For instance, by integrating demographic data, we can examine how transit use
hange pattern vary across different segments of the population. This allows governments to gain insights into how transit use
hanges among distinct groups of people and develop targeted policies to enhance social equity. By incorporating travel data from
iverse transportation modes, we can delve into how individuals change the travel pattern during a crisis, facilitating a deeper
nderstanding of the factors driving transit use change, such as a transition towards private vehicles. Furthermore, this study
rovides a retrospective view of the impact of key government policies on people’s transit use behavior during COVID-19. However,
OCD is capable of detecting people’s travel behavior change in real-time, which can help governments dynamically adjust policies.
he framework can support government in policy decision-making and emergency management in future crises.
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Appendix A. Examples of distribution of 𝑵𝒅𝒂𝒚 during a characteristic period

The BOCD algorithm detects changepoints by identifying changes in the parameters of the observations’ distribution. When an
14

abrupt change in the parameters is detected at a specific observation, it is referred to as a changepoint. Between changepoints, the
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Fig. A.1. Examples of distribution of 𝑁𝑑𝑎𝑦 and fitted probability density curves of binomial distribution.

distribution of observations is relatively stable. As such, we focus on fitting the observations of 𝑁𝑑𝑎𝑦 between the changepoints –
within the characteristic period – when validating our assumption that 𝑁𝑑𝑎𝑦 follows binomial distribution. However, if the number
of observations within a characteristic period is small, it may result in insufficient statistical power. Fewer observations make it
difficult to estimate parameters accurately. Additionally, the fitting process may suffer from overfitting, where it overly relies on
the limited observations and overlooks broader data trends. Therefore, we only perform fitting on the characteristic periods that span
at least 30 weeks, ensuring that we have a sufficient number of observations (30 or more) for accurate estimation. Upon applying
the selection criteria, we obtain available data from 41,730 users. Given the maximum value of 𝑁𝑑𝑎𝑦 is 7, we determine one of the
parameters 𝑛 for the binomial distribution as 7. Using maximum likelihood estimation, we estimate the value of another parameter
𝑝. Finally, through Kolmogorov–Smirnov Test, the 𝑁𝑑𝑎𝑦 of 26,040 (about 62%) users are found to follow a binomial distribution
(see Fig. A.1).

Appendix B. Sensitivity analysis of BOCD parameters

In this study, BOCD detects changes in individuals’ transit use frequency based on beta-binomial distribution, which relies on
two essential parameters — 𝛼 and 𝛽. Through conducting sensitivity analyses on these parameters, we discovered that our results
remain robust by variations in these parameters.

B.1. 𝛼 = 1, 𝛽 = 0.5

See Fig. B.2 and Table B.1.

B.2. 𝛼 = 1, 𝛽 = 1

See Fig. B.3 and Table B.2.
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Fig. B.2. Number of changepoints with travel frequency increase (𝑈) and decrease (𝐷) in each week before and during COVID-19.

Fig. B.3. Number of changepoints with travel frequency increase (𝑈) and decrease (𝐷) in each week before and during COVID-19.
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B

Table B.1
The regression results of policy impacts on the number of changepoints.

Change direction Time lag (day) 𝑅2 𝑃
Factors

Intercept 𝑅𝐴 𝑆𝐷 𝑃𝑇𝑃 𝐸𝑆𝐷 𝐶𝑎𝑠𝑒𝐽

Up (travel frequency increase)

7 0.37 0.008 −0.05 −0.45 −0.02 −0.40 1.37∗∗∗ −0.09
14 0.57 0.000 −0.25 −0.33 0.16 −0.46 1.56∗∗∗ −0.06
21 0.54 0.000 −0.15 −0.46 0.33 −0.59 1.41∗∗∗ −0.11
28 0.52 0.000 −0.39 −0.25 0.37 0.01 1.37∗∗∗ −0.07

Down (travel frequency decrease)

7 0.50 0.000 1.36 3.34∗∗∗ 0.18 −0.43 −0.29 −0.19
14 0.55 0.000 1.09 3.08∗∗∗ 0.13 −0.12 −0.25 −0.15
21 0.66 0.000 0.62 3.47∗∗∗ −0.21 0.23 −0.02 −0.05
28 0.63 0.000 0.74 3.28∗∗∗ −0.82 0.60 −0.39 0.01

Note: * significant at 0.1 level, ** significant at 0.05 level, and *** significant at 0.01 level.

Table B.2
The regression results of policy impacts on the number of changepoints.

Change direction Time lag (day) 𝑅2 𝑃
Factors

Intercept 𝑅𝐴 𝑆𝐷 𝑃𝑇𝑃 𝐸𝑆𝐷 𝐶𝑎𝑠𝑒𝐽

Up (travel frequency increase)

7 0.36 0.009 −0.05 −0.45 −0.01 −0.37 1.34∗∗∗ −0.08
14 0.56 0.000 −0.24 −0.34 0.19 −0.44 1.53∗∗∗ −0.06
21 0.54 0.000 −0.15 −0.46 0.34 −0.56 1.39∗∗∗ −0.10
28 0.51 0.000 −0.38 −0.27 0.39 0.02 1.34∗∗∗ −0.07

Down (travel frequency decrease)

7 0.51 0.000 1.35 3.17∗∗∗ 0.21 −0.40 −0.28 −0.18
14 0.57 0.000 1.10 2.93∗∗∗ 0.17 −0.11 −0.26 −0.15
21 0.67 0.000 0.68 3.27∗∗∗ −0.15 0.19 −0.06 −0.05
28 0.65 0.000 0.79 3.09∗∗∗ −0.73 0.53 −0.41 −0.01

Note: * significant at 0.1 level, ** significant at 0.05 level, and *** significant at 0.01 level.

Fig. B.4. Number of changepoints with travel frequency increase (𝑈) and decrease (𝐷) in each week before and during COVID-19.

.3. 𝛼 = 1, 𝛽 = 2

See Fig. B.4 and Table B.3.
17



Transportation Research Part A 181 (2024) 104003Y. Lin et al.

A

A

A
A
A

B
B

B

B
C

D
D
E

F

G
H
H
H

J

J
K

K

K

K

K
K
L

L

L

L

M

Table B.3
The regression results of policy impacts on the number of changepoints.

Change direction Time lag (day) 𝑅2 𝑃
Factors

Intercept 𝑅𝐴 𝑆𝐷 𝑃𝑇𝑃 𝐸𝑆𝐷 𝐶𝑎𝑠𝑒𝐽

Up (travel frequency increase)

7 0.35 0.011 −0.02 −0.48 −0.01 −0.38 1.39∗∗∗ −0.08
14 0.56 0.000 −0.23 −0.36 0.20 −0.45 1.60∗∗∗ −0.06
21 0.54 0.000 −0.12 −0.49 0.37 −0.60 1.46∗∗∗ −0.11
28 0.51 0.000 −0.36 −0.29 0.41 0.01 1.40∗∗∗ −0.07

Down (travel frequency decrease)

7 0.51 0.000 1.35 3.17∗∗∗ 0.21 −0.40 −0.28 −0.18
14 0.57 0.000 1.10 2.93∗∗∗ 0.17 −0.11 −0.26 −0.15
21 0.67 0.000 0.68 3.27∗∗∗ −0.15 0.19 −0.06 −0.05
28 0.65 0.000 0.79 3.09∗∗∗ −0.73 0.53 −0.41 −0.01

Note: * significant at 0.1 level, ** significant at 0.05 level, and *** significant at 0.01 level.

References

Abad, R.P., Fillone, A., 2018. Factors affecting travel behavior during flood events in Metro Manila, Philippines.
Adams, R.P., MacKay, D.J.C., 2007. Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742.
Akim, A., Ayivodji, F., 2020. Interaction effect of lockdown with economic and fiscal measures against COVID-19 on social-distancing compliance: Evidence from

Africa. Available at SSRN 3621693.
lmlöf, E., Rubensson, I., Cebecauer, M., Jenelius, E., 2021. Who continued travelling by public transport during COVID-19? Socioeconomic factors explaining

travel behaviour in Stockholm 2020 based on smart card data. Eur. Transp. Res. Rev. 13 (1), 1–13.
loi, A., Alonso, B., Benavente, J., Cordera, R., Echániz, E., González, F., Ladisa, C., Lezama-Romanelli, R., López-Parra, Á., Mazzei, V., et al., 2020. Effects of

the COVID-19 lockdown on urban mobility: Empirical evidence from the city of santander (Spain). Sustainability 12 (9), 3870.
minikhanghahi, S., Cook, D.J., 2017. A survey of methods for time series change point detection. Knowl. Inf. Syst. 51 (2), 339–367.
ppel, U., Brandt, A.V., 1983. Adaptive sequential segmentation of piecewise stationary time series. Inform. Sci. 29 (1), 27–56.
ydin, N., Kuşakcı, A.O., Deveci, M., 2022. The impacts of COVID-19 on travel behavior and initial perception of public transport measures in Istanbul. Decis.

Anal. J. 2, 100029.
arry, D., Hartigan, J.A., 1992. Product partition models for change point problems. Ann. Statist. 260–279.
atomen, B., Cloutier, M.-S., Palm, M., Widener, M., Farber, S., Bondy, S.J., Di Ruggiero, E., 2023. Frequent public transit users views and attitudes toward

cycling in Canada in the context of the COVID-19 pandemic. Multimodal Transp. 2 (2), 100067.
lendon, R.J., Koonin, L.M., Benson, J.M., Cetron, M.S., Pollard, W.E., Mitchell, E.W., Weldon, K.J., Herrmann, M.J., 2008. Public response to community

mitigation measures for pandemic influenza. Emerg. Infect. Diseases 14 (5), 778.
rown, A., Williams, R., 2023. Equity implications of ride-hail travel during COVID-19 in California. Transp. Res. Rec. 2677 (4), 1–14.
hen, C., Feng, T., Gu, X., Yao, B., 2022. Investigating the effectiveness of COVID-19 pandemic countermeasures on the use of public transport: A case study of

The Netherlands. Transp. Policy 117, 98–107.
esobry, F., Davy, M., Doncarli, C., 2005. An online kernel change detection algorithm. IEEE Trans. Signal Process. 53 (8), 2961–2974.
owney, A.B., 2008. A novel changepoint detection algorithm. arXiv preprint arXiv:0812.1237.
smailpour, J., Aghabayk, K., Aghajanzadeh, M., De Gruyter, C., 2022. Has COVID-19 changed our loyalty towards public transport? Understanding the moderating

role of the pandemic in the relationship between service quality, customer satisfaction and loyalty. Transp. Res. A 162, 80–103.
athi-Kazerooni, S., Rojas-Cessa, R., Dong, Z., Umpaichitra, V., 2020. Time series analysis and correlation of subway turnstile usage and Covid-19 prevalence in

New York city. arXiv preprint arXiv:2008.08156.
odfrey, J., Saliceto, G., Yegidis, R., 2019. Role of public transportation in a natural disaster state of emergency declaration. Transp. Res. Rec. 2673 (5), 230–239.
abibi, R., 2021. Bayesian online change point detection in finance. Financial Internet Q. 17 (4), 27–33.
e, Y., Thies, S., Avner, P., Rentschler, J., 2021. Flood impacts on urban transit and accessibility—A case study of kinshasa. Transp. Res. D 96, 102889.
eiskanen, A., Galipeau, Y., Langlois, M.-A., Little, J., Cooper, C.L., 2022. SARS-CoV-2 seroprevalence in those utilizing public transportation or working in the

transportation industry: A rapid review. Int. J. Environ. Res. Public Health 19 (18), 11629.
enelius, E., Cebecauer, M., 2020. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts.

Transp. Res. Interdiscip. Perspect. 8, 100242.
ones, J.H., Salathé, M., 2009. Early assessment of anxiety and behavioral response to novel swine-origin influenza A (H1N1). PLoS One 4 (12), e8032.
amga, C., Eickemeyer, P., 2021. Slowing the spread of COVID-19: Review of ‘‘social distancing’’ interventions deployed by public transit in the United States

and Canada. Transp. Policy 106, 25–36.
aplan, S., Tchetchik, A., Greenberg, D., Sapir, I., 2022. Transit use reduction following COVID-19: The effect of threat appraisal, proactive coping and institutional

trust. Transp. Res. A 159, 338–356.
im, C., Cheon, S.H., Choi, K., Joh, C.-H., Lee, H.-J., 2017. Exposure to fear: Changes in travel behavior during MERS outbreak in Seoul. KSCE J. Civ. Eng. 21,

2888–2895.
im, M.-H., Lee, J., Gim, T.-H.T., 2021. How did travel mode choices change according to coronavirus disease 2019? Lessons from Seoul, South Korea. Int. J.

Urban Sci. 25 (3), 437–454.
itchovitch, S., Liò, P., 2011. Community structure in social networks: Applications for epidemiological modelling. PLoS One 6 (7), e22220.
usakabe, T., Asakura, Y., 2014. Behavioural data mining of transit smart card data: A data fusion approach. Transp. Res. C 46, 179–191.
in, J.Y.-J., Chen, C., Angah, O., 2022. Socio-economic and spatial disparity of bus ridership impacts in King County, Washington, during COVID-19. Transp.

Res. Rec. 03611981221116366.
in, Y., Xu, Y., Zhao, Z., Park, S., Su, S., Ren, M., 2023. Understanding changing public transit travel patterns of urban visitors during COVID-19: A multi-stage

study. Travel Behav. Soc. 32, 100587.
iu, X., Kortoçi, P., Motlagh, N.H., Nurmi, P., Tarkoma, S., 2022. A survey of COVID-19 in public transportation: Transmission risk, mitigation and prevention.

Multimodal Transp. 1 (3), 100030.
ucchesi, S.T., Tavares, V.B., Rocha, M.K., Larranaga, A.M., 2022. Public transport COVID-19-safe: New barriers and policies to implement effective

countermeasures under user’s safety perspective. Sustainability 14 (5), 2945.
arra, A.D., Sun, L., Corman, F., 2022. The impact of COVID-19 pandemic on public transport usage and route choice: Evidences from a long-term tracking

study in urban area. Transp. Policy 116, 258–268.
18

http://refhub.elsevier.com/S0965-8564(24)00051-X/sb1
http://arxiv.org/abs/0710.3742
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb3
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb3
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb3
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb4
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb4
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb4
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb5
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb5
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb5
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb6
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb7
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb8
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb8
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb8
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb9
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb10
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb10
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb10
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb11
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb11
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb11
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb12
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb13
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb13
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb13
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb14
http://arxiv.org/abs/0812.1237
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb16
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb16
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb16
http://arxiv.org/abs/2008.08156
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb18
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb19
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb20
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb21
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb21
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb21
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb22
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb22
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb22
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb23
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb24
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb24
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb24
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb25
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb25
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb25
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb26
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb26
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb26
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb27
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb27
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb27
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb28
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb29
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb30
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb30
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb30
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb31
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb31
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb31
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb32
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb32
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb32
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb33
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb33
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb33
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb34
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb34
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb34


Transportation Research Part A 181 (2024) 104003Y. Lin et al.

M
P

P

R

R

S

S

S
S
T

U

V

W
W

Z
Z
Z

Mashrur, S.M., Wang, K., Loa, P., Hossain, S., Nurul Habib, K., 2023. Application of protection motivation theory to quantify the impact of pandemic fear on
anticipated postpandemic transit usage. Transp. Res. Rec. 2677 (4), 267–286.

üller, S.A., Balmer, M., Neumann, A., Nagel, K., 2020. Mobility traces and spreading of COVID-19. MedRxiv, 2020–03.
arker, M.E., Li, M., Bouzaghrane, M.A., Obeid, H., Hayes, D., Frick, K.T., Rodríguez, D.A., Sengupta, R., Walker, J., Chatman, D.G., 2021. Public transit use in

the United States in the era of COVID-19: Transit riders’ travel behavior in the COVID-19 impact and recovery period. Transp. Policy 111, 53–62.
itale, A.M., Parida, M., Sadhukhan, S., 2023. Factors influencing choice riders for using park-and-ride facilities: A case of Delhi. Multimodal Transp. 2 (1),

100065.
eeves, J., Chen, J., Wang, X.L., Lund, R., Lu, Q.Q., 2007. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol.

Climatol. 46 (6), 900–915.
en, M., Park, S., Xu, Y., Huang, X., Zou, L., Wong, M.S., Koh, S.-Y., 2022. Impact of the COVID-19 pandemic on travel behavior: A case study of domestic

inbound travelers in Jeju, Korea. Tour. Manag. 92, 104533.
adique, M.Z., Edmunds, W.J., Smith, R.D., Meerding, W.J., De Zwart, O., Brug, J., Beutels, P., 2007. Precautionary behavior in response to perceived threat of

pandemic influenza. Emerg. Infect. Diseases 13 (9), 1307.
helat, S., Cats, O., van Cranenburgh, S., 2022. Traveller behaviour in public transport in the early stages of the COVID-19 pandemic in the Netherlands. Transp.

Res. A 159, 357–371.
hortall, R., Mouter, N., Van Wee, B., 2022. COVID-19 passenger transport measures and their impacts. Transp. Rev. 42 (4), 441–466.
ogbe, E., 2021. The evolving impact of coronavirus (COVID-19) pandemic on public transportation in Ghana. Case Stud. Transp. Policy 9 (4), 1607–1614.
iikkaja, H., Viri, R., 2021. The effects of COVID-19 epidemic on public transport ridership and frequencies. A case study from tampere, Finland. Transp. Res.

Interdiscip. Perspect. 10, 100348.
lfarsson, G.F., Steinbrenner, A., Valsson, T., Kim, S., 2015. Urban household travel behavior in a time of economic crisis: Changes in trip making and transit

importance. J. Transp. Geogr. 49, 68–75.
assallo, J.M., Perez De Villar, P., Muñoz-Raskin, R., Serebrisky, T., 2009. Public transport funding policy in Madrid: Is there room for improvement? Transp.

Rev. 29 (2), 261–278.
ielechowski, M., Czech, K., Grzeda, Ł., 2020. Decline in mobility: Public transport in Poland in the time of the COVID-19 pandemic. Economies 8 (4), 78.
ilbur, M., Ayman, A., Sivagnanam, A., Ouyang, A., Poon, V., Kabir, R., Vadali, A., Pugliese, P., Freudberg, D., Laszka, A., et al., 2023. Impact of COVID-19 on

public transit accessibility and ridership. Transp. Res. Rec. 2677 (4), 531–546.
hao, Z., Koutsopoulos, H.N., Zhao, J., 2018a. Detecting pattern changes in individual travel behavior: A Bayesian approach. Transp. Res. B 112, 73–88.
hao, Z., Koutsopoulos, H.N., Zhao, J., 2018b. Individual mobility prediction using transit smart card data. Transp. Res. C 89, 19–34.
uo, T., 2020. Promote transit via hardening first-and-last-mile accessibility: Learned from modeling commuters’ transit use. Transp. Res. D http://dx.doi.org/

10.1016/j.trd.2020.102446.
19

http://refhub.elsevier.com/S0965-8564(24)00051-X/sb35
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb35
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb35
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb36
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb37
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb37
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb37
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb38
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb38
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb38
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb39
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb39
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb39
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb40
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb40
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb40
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb41
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb41
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb41
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb42
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb42
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb42
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb43
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb44
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb45
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb45
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb45
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb46
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb46
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb46
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb47
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb47
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb47
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb48
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb49
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb49
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb49
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb50
http://refhub.elsevier.com/S0965-8564(24)00051-X/sb51
http://dx.doi.org/10.1016/j.trd.2020.102446
http://dx.doi.org/10.1016/j.trd.2020.102446
http://dx.doi.org/10.1016/j.trd.2020.102446

	Assessing effects of pandemic-related policies on individual public transit travel patterns: A Bayesian online changepoint detection based framework
	Introduction
	Literature review
	Methodology
	Change detection of frequent transit users
	Change pattern characterization and quantification of behavioral change persistency

	Case Study
	Dataset
	Changepoints: Temporal evolution and interpersonal variations
	Occurrence and persistency of behavior changes
	Policy impacts on the observed changes

	Discussion and Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. Examples of distribution of Nday during a characteristic period
	Appendix B. Sensitivity analysis of BOCD parameters
	α=1, β=0.5
	α=1, β=1
	α=1, β=2

	References


