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ABSTRACT
Various big geo-data provide a social sensing approach to measure spatial interactions. Existing 
studies often aggregate individual-level movement trajectories or social ties to obtain the inter-
action intensity between places, neglecting the detailed meanings (i.e. the semantics) behind 
spatial interactions. However, such meanings help to understand the relationship between two 
places, and consequently, the characteristics of both places. We argue that semantics can be 
extracted from spatial interactions through features of space, time, symmetry, and individual- 
based statistics. Whereafter the calculation and applications of the features are given. Furthermore, 
we discuss the construction of spatial interaction networks with semantics, as well as approaches 
to representing places according to spatial interactions. Finally, we illustrate the potential value of 
spatial interaction semantics in facilitating decision-making through an example in the context of 
tourism planning.
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1. Introduction

Spatial interaction is a classic research topic in human 
geography (Fotheringham 1981; Roy and Thill 2004; 
Ullman 1980). It focuses on inter-place relationships 
that can be measured by flows of people, freight, ser-
vices, energy, or information (J. Wang 2017). Based on 
observed spatial interactions, we can identify the under-
lying spatial structure that consists of the linkages, 
nodes, hinterlands, and hierarchies (Taaffe 2001). On 
the one hand, spatial interactions connect separated 
places in geographical space into a system with 
a certain structure and function. On the other hand, 
spatial interactions keep changing, reflecting the evolu-
tion of geographical features and their spatial structure. 
Due to the high storage complexity, O(n2), of spatial 
interaction data, traditional data collection methods 
are with higher costs, thus limiting the in-depth analyses 
and applications. Leveraging multi-source social sensing 
data, we can conveniently quantify the spatial interac-
tion intensity (Y. Liu et al. 2015). This brings new oppor-
tunities for understanding spatial interactions, as well as 
the networks consisting of multiple places and the 
underlying geospatial patterns.

In general, two approaches are available to obtain 
spatial interactions. First, we can extract individual 

granular movement trajectories based on data such as 
mobile phone data and taxi trajectories, and then calcu-
late the total flow between every pair of spatial units as 
the intensity of spatial interaction. Second, we can esti-
mate the interaction intensity by aggregating social ties 
observed from mobile (or landline) communication and 
social media friendship (Y. Liu et al. 2020). In practice, the 
former approach has gained more attention due to 
richer data sources. For simplicity, we refer to 
a movement as a flow, which can be abstracted as 
a vector from starting point <x1, y1> to endpoint <x2, 
y2>. If the starting and ending times are recorded, it can 
also be represented as a vector in a three-dimensional 
space of time and space. As a comparison, spatial inter-
action refers to the inter-place connections, including 
flows and social ties, obtained based on aggregation 
(Figure 1).

As big geo-data have provided great conveniences for 
quantifying spatial interactions, spatial interaction 
recently becomes a hot topic in geographical studies. 
Various data have been used to measure the interaction 
intensity between geographical units with different spa-
tial scales. Studies based on interaction intensities include 
identifying the underlying spatial structure behind 
observed interactions, revealing the driving factors such 
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as spatial proximity and socio-economic conditions, 
depicting the dynamic evolution along the temporal 
dimension and making predictions, and finally applying 
them to fields such as urban planning, traffic manage-
ment, and public health. For example, the community 
detection methods borrowed from network sciences are 
widely used to uncover the spatial structure of a certain 
area. Guimera et al. (2005), Ratti et al. (2010), Liu et al. 
(2014), and Chi et al. (2016) employed the community 
detection methods to delineate the spatial structure of 
regions with different scales, ranging from the global to 
nationwide, provincial, and intra-urban levels. The data 
sources of these studies cover flight data, mobile phone 
communication data, social media data, and taxi trajec-
tory data. Regarding constructing models (such as the 
gravity model and the intervention opportunity model) 
to explain and predict the interaction intensity between 
two locations, there are investigations about the distance 
effect (Liben-Nowell et al. 2005), the radiation model 
proposed by Simini et al. (2012), and the comparison 
between the radiation model and the gravity model 
(Masucci et al. 2013). In a recent study, Ren et al. (2020) 
quantified the impact of inter-place functional comple-
mentarity on spatial interactions.

When aggregating flows based on individuals’ tra-
jectories, the time and frequency distributions of these 
flows are of great significance. Unfortunately, most 
existing spatial interaction research pays much atten-
tion to collective interaction intensities (as depicted in 
Figure 1), while ignoring the detailed information that 
can be extracted from fine-grained big data. Hence, it 
is difficult to deeply understand the attributes of 
places at both ends of the interaction. We can use 
social networks as an analogy to illustrate this point. 
Suppose two pairs of individuals both have 5 phone 

calls in one month with different temporal distribu-
tions. The calls occur on the same day for the first case 
while evenly distributed within a month for the second 
one. Clearly, the corresponding interpersonal relation-
ships differ. The former roughly corresponds to two 
people who communicate due to temporary matters, 
while the latter often implies a stable and close rela-
tionship. Similarly, given two pairs of places, even if 
the interaction intensity is the same, the differences in 
semantic features, such as temporal distributions, can 
distinguish the relationship between places and reveal 
the attributes of participating places.

Scholars have explored detailed semantics of spatial 
interactions using different social sensing methods. 
Kang et al. (2015) investigated the diurnal variations of 
intracity interactions between traffic analysis zones 
(TAZs) using Beijing taxi data, and conducted clustering 
to identify several types of meaningful spatial connec-
tions, such as commuting and entertainment. Each type 
is associated with certain temporal curves of interaction 
intensity. Schläpfer et al. (2021) delved into the fre-
quency characteristics of spatial interactions and 
pointed out that they are related to the hierarchical 
level of urban facilities. However, there is still a lack of 
comprehensive and systematic understanding of spatial 
interaction semantics. Therefore, this study proposes the 
concept of spatial interaction semantics (SIS) and sum-
marizes the computation methods of SIS from various 
aspects, including space, time, symmetry, and indivi-
dual-based statistics. Furthermore, we discuss how to 
characterize places based on SIS and further construct 
semantic spatial interaction network analysis methods. 
The proposed SIS framework can serve as a guiding 
principle for spatial interaction sensing studies and 
applications supported by big geo-data.

Figure 1. The relationship between flows and spatial interactions. (a) Four individual-level flows between three places. (b) Measuring 
spatial interaction intensities by aggregating flows. Arrows indicate the direction of flow, and if there are arrows at both ends, it 
indicates bidirectional flow. The thickness of the line indicates the magnitude of flow, that is, the intensity of spatial interaction. Line 
colors indicate different types of flows or spatial interactions. These apply to all figures.
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2. Spatial interaction semantics

In the field of linguistics, semantics refers to the mean-
ings contained in language (Kroeger 2018). Regarding 
information systems, it usually refers to the meanings of 
a concept (such as the city) or a data set (such as an 
image). Given that the spatial interaction between two 
places reflects their relationship, the underlying seman-
tics in spatial interactions help us to understand the 
meanings of such inter-place relationships derived 
from flows of people and goods. For example, the rela-
tionship between residential areas and workplaces can 
be represented by commuting flows. Clearly, if the 
meanings of two inter-place relationships are different, 
we should observe different spatial interaction patterns. 
Since semantic features and semantic relations are 
essential to represent the meaning of a concept 
(Maggo and Garg 2022), it is valuable to extract spatial 
interaction semantics from the features of such flows, 
with the support of big geo-data. Note that the inter-
pretation of semantics depends on users’ background 
knowledge. In other words, the derived semantics vary 
from person to person. Also, such semantics are applica-
tion specific. With the same observed features, different 
semantics may be derived in different applications (e.g. 
transportation planning or tourism management).

The significance of SIS for geographic analysis is two-
fold. First, it helps to comprehensively depict the rela-
tionship between two locations. Analogous to social 
networks, two individuals are linked if they have certain 
relationships. Suppose with more observations, we can 
somehow determine the concrete social tie types (e.g. 
kinship and colleagueship) and measure the relationship 
strength between two individuals, then the social net-
work is with semantics. In other words, the network 
contains much richer meanings. Second, based on the 

semantics of all spatial interactions between a place and 
other places, the characteristics of the place can be 
comprehensively understood. The above procedure 
can be formalized as follows. Given places Pi and Pj, the 
spatial interactions can be represented as a mapping 
Pi � Pj ! v, if only the volumes (or interaction intensi-
ties) V are considered. However, when interaction 
semantics are obtained, the range of the mapping is 
a set of vectors, that is, Pi � Pj ! v; s1; s2; . . . ; sn. Based 
on the n-dimensional vectors, the spatial interactions 
can be classified into m categories, Ci; i ¼ 1 ~m. 
Consequently, employing these categorical labels that 
align closely with a shared understanding facilitates 
a clearer interpretation of the characteristics of different 
places. This procedure embodies a saying in social net-
works, i.e. ‘you can better know a person according to 
his/her friends’.

While traditional data can only quantify interaction 
strength, big data can extract rich semantics due to its 
merit of fine granularity. Especially, spatial interactions 
measured by human movements contain much more 
detailed information. A related concept is semantic tra-
jectory (Parent et al. 2013). An ordinary trajectory can be 
expressed as a sequence of space-time points. In con-
trast, a semantic trajectory records information such as 
travel purposes, travel modes, speed, geographical 
environments, and the demographical properties of the 
traveller such as gender and age. Hence, it is convenient 
to extract interaction semantics (Figure 2). Detailed tra-
vel information is often obtained using costly travel 
survey methods. Although big geo-data provide 
a promising approach to semantic enrichment, they 
unfortunately belong to a type of ‘thin data’ compared 
to travel survey data (Y. Liu 2016) and lack explicit infor-
mation such as travel purposes. For example, precise 
pick-up and drop-off locations and times can be 

Figure 2. Deriving semantic features of spatial interactions by aggregating semantic trajectories. By considering different aspects of 
flows, a framework including four types of semantic features can be established.
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obtained from taxi trajectories, but the travel purposes 
keep unknown. A challenge is to infer detailed informa-
tion utilizing additional clues such as land uses and POI 
distributions around the drop-off points (Gong et al. 
2016).

3. Enriching spatial interaction semantics

Comprehensive analyses of interaction patterns rely on 
detailed semantics. As shown in Figure 2, we argue that 
SIS are derivable from the following features besides 
intensity: spatial features (including distance and direc-
tion), temporal features, symmetry features, and statisti-
cal distributions of flows (based on different travel 
purposes, traffic modes, and even demographical char-
acteristics of travellers). Note that the calculation of 
these features encounters the modifiable areal unit pro-
blem, since spatial interactions are generally obtained by 
aggregating flows between places. The derived seman-
tics are inevitably affected by the places’ spatial extents 
(and time resolution when considering temporal fea-
tures). The issue is important but not the focus of this 
research.

3.1. Spatial features

A spatial interaction connects two separate locations, 
thus endowing the semantic dimension from a spatial 
perspective. The SIS from locations mainly includes two 
aspects, namely the distance and direction features 
derived from the spatial configuration of the two places, 
and the contextual features obtained from the geogra-
phical attributes of the two places, such as similarity and 
complementarity. It is worth noting that these semantic 
features are often used to construct interaction models 
to predict the intensity of interaction between places 
(Simini et al. 2021). A typical example is the gravity 
model, which uses the populations of the two end loca-
tions to enrich the semantics and then predict the 
strengths of spatial interactions.

Distance is the fundamental attribute of spatial interac-
tions since it is always related to the cost factor. Generally, 
the interaction cost between two places is positively 
related to distance, and thus the intensity will decrease 
with increasing distance. This is the phenomenon of the 
distance decay effect (Miller and Miller 2004). The distance 
decay effect can be quantified by decay parameters, such 
as β in the power law decay function d−β. Given a place, the 
stronger the distance decay effect of its association inter-
actions, the more likely the place is to be connected to 
nearby places. Conversely, the weaker the effect, the wider 
the range of the place’s influence area. For example, in 
a city, a large stadium generally shows weaker decay in 

spatial interactions and wider influence area than 
a grocery. Hence, the decay parameter serves as a good 
indicator for evaluating the relative importance of the 
place. Another important indicator for measuring interac-
tion distance is ‘effective distance’, which represents the 
fact that flows and spread of things do not always follow 
the same distance attenuation law. For example, in the 
spread of the epidemic, areas with stronger spatial interac-
tion will be more vulnerable, leading to earlier outbreaks. 
Therefore, the effective distance represented by interaction 
strength can be used as a substitute for traditional 
Euclidean distance. This transformation changes previous 
methods of establishing spatial weight matrices simply 
dominated by geographical proximity, and improves the 
accuracy of predicting the outbreak time of infectious dis-
eases (Brockmann and Helbing 2013).

The directional distribution of interactions can be 
represented by the angles of the directed lines between 
all pairs of locations. Given a place, such directional 
distribution reflects its relative location inside a city or 
a region. In general, the closer a location is to a hot spot 
or centre of a city, The more even the directional dis-
tribution is. If a place is in the outer suburbs or at the city 
boundary, the associated interactions are anisotropic, i.e. 
concentrated within a specific orientation range. Hence, 
interaction directions can help to better understand 
a location (Yao et al. 2019), and play an indicative role 
in revealing multiple centres of a city.

The place pair at both ends of a spatial interaction 
form the ‘container’ for the interaction. Hence, 
building second-order measures based on the geogra-
phical information of these two places, can define con-
textual features of the interaction and explain the 
intensity and other attributes of the interaction. For 
example, by constructing second-order association mea-
sures between venues (such as job-residence comple-
mentarity, trade complementarity, urban functional 
differences, etc.), empirical analyses can be conducted 
to reveal the internal driving forces and inherent 
mechanisms of interactions, and consequently, quantify 
the impacts of different measures on the changes of 
interaction intensity. For example, Y. Wang et al. (2021) 
considered the relationship between population migra-
tion versus urban development measured by industrial 
upgrading, and built indicators of similarity and comple-
mentarity of industrial structures to estimate the indus-
trial structure impacts on population migration. Ren 
et al. (2020) introduced functional complementarity indi-
cators into the human movement prediction model. 
They effectively improved the accuracy of interaction 
intensity prediction and confirmed the impacts of func-
tional complementarity between place pairs on spatial 
interactions.
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3.2. Temporal features

Features of spatial interactions usually change over time. 
Taking the intensity of interaction from location A to B as 
an example, its dynamics can be expressed as 
vA!B ¼ v1

A!B; � � � ; vt
A!B

� �
. The temporal variation of 

interactions is an important component of SIS. Previous 
studies have paid much attention to the diurnal cycle of 
intraurban interactions. Due to the regularity of human 
mobility, the interaction intensity between different 
places exhibits stable fluctuations within 24 hours of 
a day. The temporal patterns are related to the purposes 
of travels that constitute an interaction, such as com-
muting to work mostly occur in morning time, and the 
volume of leisure and entertainment travels is high in 
evening time (Kang et al. 2016). Hence, the temporal 
features of an interaction reflect land use properties of 
the origin and destination, as well as the similarity and 
complementarity of such properties.

Given a directed spatial interaction, the peak in the 
temporal curve during the morning indicates ‘residence 
to workplace’ or ‘residence to school’ movements. On the 
contrary, the peak in the evening implies that the inter-
action is more likely to belong to ‘workplace to residence’, 
‘school to residence’, or ‘workplace to leisure or entertain-
ment place’ travel modes Figure 3(a). If two places exhibit 
bimodal characteristics during the morning and evening 
periods, it can be attributed to the following two situa-
tions. First, both peaks are for commuting purposes and 
are generated by two different groups of people. The 
morning peak indicates that one group of people move 
to their workplaces from places of residence, and the 
evening peak indicates that this group returns from their 
workplaces to their residences. This clearly reveals the 
phenomenon of home-work separation, which can be 

measured by excess commuting. Second, the two peaks 
are generated by different populations and mixed with 
different interaction purposes. The morning peak mainly 
comes from the commuting relationship between resi-
dence and workplace, while the evening peak corre-
sponds to a mixture of various relationships such as 
‘workplace to leisure and entertainment place’, ‘leisure 
and entertainment place to residence’, and ‘workplace 
to residence’ Figure 3(b). Understanding the dynamic 
patterns of inter-place interactions helps to reveal urban 
spatial structures. For example, Chen et al. (2022) distin-
guished periodic and non-periodic patterns based on 
intensity measures within a day, and extracted temporally 
stationary interactions. Based on these interactions, they 
constructed a recurrent interaction network to detect the 
spatial structure within the city (Chen et al. 2022).

In addition to diurnal temporal features, the long-term 
temporal semantics focus on the interaction changes 
between two places over a longer time span (such as 
several years or even decades). While high-frequency spa-
tial interaction changes within a city reflect a relatively 
stable relationship between two places, long-term and 
low-frequency semantic features represent the evolution 
of urban land uses and spatial structures, or the rise and fall 
of cities at the regional scale. Taking the interaction pattern 
of Beijing as an example, the Daxing Airport, which began 
its operation in 2019, has attracted a significant number of 
flows that were originally headed to the Capital Airport. 
This resulted in a sharp decrease of flows between the 
Capital Airport and other places. Meanwhile, the introduc-
tion of subway lines connecting the city centre and suburbs 
typically prompts people to migrate from the centre area to 
the suburbs due to lower housing prices. Hence, much 
research has paid attention to long-term changes of spatial 
interaction networks. For example, Sun et al. (2015) 

Figure 3. The relationship between temporal features, represented by curve plots, and urban land uses. (a) A relatively ideal case that 
demonstrates the spatial interactions between residential areas and workplaces. In each one-direction diurnal spatial interaction 
intensity curve, there is only one peak. (b) In complicated cases with two (or more) peaks, we can identify situations such as home- 
work separation or mixed land uses.

ANNALS OF GIS 155



conducted community analysis on interaction networks 
spanning multiple years and found significant changes in 
the urban spatial structure before and after the completion 
of the expansion project of the Singapore Ring Metro Line. 
Zhong et al. (2014) conducted a comparative analysis of 
traffic card data in Singapore from 2010 to 2012, revealing 
a trend of multi-centre development in the city and the 
emergence of new sub-centres. These findings reflect the 
rapid response of spatial interactions to the changes of 
urban spatial structure.

3.3. Symmetry features

When considering bidirectional spatial interactions 
between two locations, the symmetry of interaction 
volume is an important feature. Interactions measured 
by flows of goods and funds often exhibit asymmetry or 

even unidirectionality. Given two places, the interaction 
volumes along the two directions are usually unequal 
due to the inequality in economic development and 
industrial structure. In extreme cases, such as the flow 
of agricultural products, it is generally unidirectional 
from rural areas to urban areas. Thus, the asymmetric 
characteristics reflect functional differences or even 
complementarities between the two locations involved 
in the interaction Figure 4(a). In addition to the flow of 
goods, Guo et al. (2022) used web search records to 
measure the interaction intensity between cities in 
China, which also exhibited asymmetry.

Regarding human movements, such asymmetry also 
exists. However, it can be slightly complicated and 
dependent on the spatio-temporal scale. For example, 
inter-city movements within a short interval (e.g. 10  
days) often exhibit symmetry. This is because most 

Figure 4. Different types of asymmetric spatial interactions. (a) Asymmetric in total volume; (b) symmetrical total volume but 
asymmetric in certain time periods; (c) asymmetric relative importance.
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intercity trips for purposes such as business, tourism, and 
family visits often return within a relatively short period. 
This symmetry indicates a rough balance of flows in both 
directions. However, when examining the interactions 
between cities over a long time span (e.g. 10 years), the 
asymmetric trend of intercity migrations may be 
observed by identifying areas with net outflow and 
inflow.

The symmetry features of intracity flows also relates 
to time scales. Most movements inside a city are round- 
trips and completed within one day. A typical example is 
commuting flows (Schneider et al. 2013). If a 24-hour 
observation interval is applied, the two-way flows 
between the two locations are roughly equal. However, 
it is easy to find asymmetry if we focus on specific 
periods (such as morning and evening peaks). That is, 
the flow from residential areas to workplaces in the 
morning is higher than the reverse flow, and this asym-
metry will flip during the evening Figure 4(b). With the 
support of big data, high-frequency human movements 
can be well observed, thus enable fine time scale ana-
lyses of symmetry semantics. Considering the character-
istics of residents’ travel and the nature of big data, there 
are three main reasons for asymmetric spatial interac-
tions on a daily scale. First, the travel is not a round-trip 
(e.g. ‘A-B-A’), but rather an ‘A-B-C-A’ or more complex 
circular travel chain. In general, the proportion of com-
plex travel chains is relatively low. Second, travels target-
ing intercity transportation facilities such as airports and 
train stations may lead to asymmetry, since people leav-
ing the city by plane or rail usually will not return on the 
same day. Such asymmetry may be more significant 
during a certain period such as the Spring Festival 
Holiday. Last, in some special cases, a round-trip travel 
accomplished by different transportation modes (e.g. 
taxis and buses) also leads to asymmetry if a single big 
data type (such as taxi trajectories) is used to extract 
trips. Liu et al. (2012) found a significant difference in the 
total number of arrivals and departures in a day between 
Hongqiao and Pudong airports, using the trajectory of 
taxis in Shanghai. This suggests that people tend to take 
taxis to the airport but choose transportation modes to 
leave, which may be attributed to the longer waiting 
time for taxis at the airports.

In addition to absolute symmetry based on interac-
tion intensity, the relative importance of the interaction 
at both ends can also be measured based on the propor-
tion of interaction intensity to the total interaction 
volume at the two participating locations, which is 
usually asymmetric. As shown in Figure 4(c), without 
considering directionality, the interaction strength 
between A and B is 5, but this interaction is relatively 
more important for B compared to place A.

3.4. Statistics based individual flows

Since social sensing big data include individual-level 
mobility data (Y. Liu et al. 2015), the interaction obtained 
by aggregating individual movements can contain sta-
tistical distribution features of different trip attributes, if 
the information corresponding to each trip is available. 
Such statistics can be used to analyse the correlation and 
even causal relationship between different interactions, 
which further characterizes a comprehensive picture of 
the relationships between places (Wesolowski et al. 
2014; Yue et al. 2018). The travel information includes, 
but is not limited to: users ID, demographic character-
istics (such as gender and age), purpose of travel, mode 
of transportation, accompaniers.

Among individual flow based statistics, the fre-
quency distribution characteristics of individual trips 
in an interaction have received a great deal of attention 
in recent years because of the information they imply 
about the purpose of people’s trips. For example, 
within a week, the total number of flows between two 
locations in the city is 1,000 person-times. Whether 
these 1,000 flows are completed 5 times by 200 persons 
on average, or once by 1,000 persons, the correspond-
ing specific travel purposes may be very different. The 
former usually corresponds to commuting behaviour, 
while the latter is related to general leisure and recrea-
tional activities. This is because trips for different pur-
poses have different frequency characteristics for 
a person: trips such as buying daily necessities may be 
made once every few days; trips such as watching 
sports events are reduced to once every few months; 
while for commuting trips, the frequency is usually 
higher than for non-commuting trips. Schläpfer et al. 
(2021) systematically illustrated the importance of indi-
vidual trip frequency in spatial interactions and found 
that visitor traffic in an area is inversely proportional to 
the product square of trip distance r and trip frequency 
f (i.e. rfð Þ2). This finding suggests that traffic between 
two locations within a city can be divided into ‘short 
distance-high frequency’ and ‘long distance-low fre-
quency’ interactions. From an individual perspective, 
this also suggests that the energy of human travel is 
conserved: the distance and frequency of people’s tra-
vel is a process of mutual constraint and optimization. 
To explain the above findings, the authors introduced 
a preference exploration mechanism based on the pre-
ference return model, i.e. people tend to explore pop-
ular locations, thus reproducing the above ‘frequency- 
distance’ law and also obtaining an urban spatial struc-
ture that conforms to Zipf’s law (Batty 2008; Rozenfeld 
et al. 2011). These results are not only used to predict 
visitor flows between the two locations, but also 
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validate the well-known central place theory of tradi-
tional geography (Batty 2013) and Weber’s theory of 
emergent optimality (Weber and Friedrich 1929).

However, due to user privacy issues, sometimes indi-
vidual information in social sensing big data is not 
directly accessible (Kang et al. 2020). A large number of 
researchers have also sought to infer attribute and tra-
vel-related information about individuals through their 
spatio-temporal distribution of trips (Gong et al. 2016; 
Schneider et al. 2013; Wu et al. 2019; Y. Zhong et al. 
2015), thus indirectly ensuring the richness of interaction 
semantic information at the individual level.

4. Leveraging semantics in network analysis

Spatial interaction describes the interplay between dif-
ferent objects embedded in geographical space. 
A spatial network consists of all spatial interactions in 
a given geographical area, within which each spatial 
object is taken as a node and the interaction between 
two different spatial locations is taken as an edge. As 
such, if two spatial interactions share a node, they gen-
erate a connected component. If all nodes are con-
nected, they generate a spatial network Figure 5(a). At 

the beginning, the topological adjacency is the most 
commonly used spatial relationship to define the edge 
in a spatial network. That is, edges only exist between 
adjacent spatial locations and the entire spatial network 
is unweighted. In such a simplified representation of 
spatial network, the complex forms of spatial interaction 
as well as their rich semantics are not fully considered. 
Later, the contextualized interactions beyond the topo-
logical relationship are utilized to define weighted edges 
in spatial networks. For example, the intensity of spatial 
interactions is spatially sensitive, as the connections 
between certain spatial locations are tighter (Barrat, 
Barthélemy, and Vespignani 2005). In recent years, as 
the scale of the complexity, diversity and semantics of 
spatial interactions revealed in big geo-data increases, 
spatial network analysis has witnessed many develop-
ments that go beyond the paradigm of social network 
analysis. Apart from the interaction intensity, the pur-
pose, means, speed and context of spatial interactions 
from a social sensing perspective, as well as the demo-
graphic characteristics of the actors in the spatial inter-
action systems are considered as meaningful for 
understanding spatial interaction networks. Since differ-
ent layers of spatial networks can be derived from the 

Figure 5. Two approaches to constructing networks from spatial interactions. (a) Place perspective, where two places are linked if 
there are flows between them. (b) Moving object perspective, where two places are linked if they are visited by the same moving 
object, such as an individual. In the manner, a hypergraph is constructed.
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different forms, contexts and semantics of spatial inter-
actions, the interplays between spatial objects can be 
more comprehensively analysed. The multi-layer spatial 
networks that capture the spatial interactions across 
different time periods and different interaction forms 
are widely used tools for the analysis of such complex 
spatial interaction systems. For example, a sequence of 
spatial networks can be built in consecutive time periods 
(such as by hours, days, months, and years) to uncover 
the spatio-temporal dynamics of spatial interactions 
(Kang, Jiang, and Liu 2022). The interplays between 
different forms of transport interactions (including 
taxis, buses and subways) can decouple the substitution, 
competition, and/or complementation relationships 
between them in space and time (Yue et al. 2018). 
Such complex, multi-layered spatial networks have 
already drawn growing attention in recent years. 
Additionally, socially sensed big geo-data also showed 
an ability to capture the complete, continuous trajec-
tories of the moving actors in a spatial interaction sys-
tem. It thus provides a human-mobility-centric 
perspective of understanding the spatial interactions 
between locations. A hyper-edge between multiple loca-
tions can be defined if they are visited by a moving 
subject Figure 5(b). A network that consists of such 
hyper-edges is termed a hyper-graph that characterizes 
flow-based semantics of spatial interactions. Moreover, 
in a spatial interaction system in the form of hyper- 
graphs, the node can also be defined in varying spatial 
scales, by aggregating adjacent locations into a hyper- 
node. By applying network models of hyper-nodes and 
hyper-edges, it becomes more flexible to address certain 
fundamental issues in geographical analysis, including 
the ambiguity of defining spatial entities and the com-
plexity of defining high-order relationships (Kang and 
Qin 2016; Kang, Jiang, and Liu 2022).

5. Deriving place characteristics

Given the attributes of places and the distances between 
them, we can predict the strength of spatial interactions. 
On the other hand, the observed strength and semantic 
information of spatial interactions also promote our 
understanding of place characteristics (Batty 2013). 
Earlier studies achieve this goal through reversely fitting 
gravitational models, i.e. estimating place repulsiveness 
and attractiveness according to the strength of inter-place 
spatial interactions and geographic distances (O’Kelly et 
al. 1995; Xiao et al. 2013). If we can observe more abun-
dant semantic information beyond the interaction inten-
sity, undoubtedly, the characterization of places will be 
more precise and comprehensive.

There are two main approaches to characterizing 
place attributes according to the semantics of spatial 
interactions. The first approach is to aggregate all rele-
vant interactions for a given place and interpret place 
attributes with statistical measures Figure 6(b). For 
example, Kang et al. (2015) found that the temporal 
distributions of spatial interactions for nightlife places 
(e.g. Sanlitun) show a significant increase at night from 
the taxi trajectory data of Beijing. Yao et al. (2019) 
argued that the average distance of spatial interactions 
associated with the Capital International Airport is 
longer than that with other places, and most of the 
spatial interactions are in the ‘southwest-northeast’ 
direction. Such findings are consistent with the geogra-
phical fact that the airport is located in the northeast of 
Beijing’s main urban area. In this direction, the flow- 
based I-index proposed by X. Wang et al. (2021) 
deserves to be mentioned. If the index of a place is i, 
it means that there are i flows whose origins are at least 
αi metres away from the place, while the origins of the 
remaining flows are no more than αi metres (α is 
a predefined parameter). Thus, the higher the I-index 
of a place is, the more attractive the place is. Moreover, 
a place with a higher I-index also means that it can 
attract long-range trips, which corresponds to a larger 
impact area.

The second approach involves learning place repre-
sentations from spatial interaction networks. 
Representation learning is a set of machine learning 
techniques that aims at extracting significant patterns 
from raw data to create more interpretable features 
(Bengio et al. 2013). Thus, the learned place representa-
tions are supposed to contain features explaining the 
driving factors of the observed spatial interactions, spe-
cifically those associated with place attributes 
Figure 6(c). In data-sufficient cases, some studies also 
consider multiple spatial interaction semantics by con-
structing spatiotemporal interaction networks, aiming to 
capture more comprehensive representations of places. 
For instance, Zhou and Huang (2018) introduced the 
SkipGram (Mikolov et al. 2013) model to learn place 
representations from manually defined spatiotemporal 
contexts of places. Results show that features explaining 
functional attributes of places are extracted from spatial 
interactions and taking into account more spatial inter-
action semantics can perform better. Wang and Li (2017) 
constructed a spatiotemporal interaction network based 
on taxi flow data and took the inter-place distances into 
account through a spatial graph. Place representations 
learned from the graphs above contain information on 
various place attributes (e.g. crime rates, per capita 
income, and housing prices).
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6. Case studies

We present two cases to demonstrate the extraction of 
semantics from spatial interactions. Both datasets are 
collected in Beijing. In the first study, we obtained inter-
action data with temporal stamps between 1418 traffic 
analysis zones (TAZs) within the 6th ring road area of 
Beijing. This dataset was provided by China Unicom, one 
of the largest mobile phone operators in China, and was 
collected from 7.48 million local users over a three- 
month period spanning July, August 2018 and 
May 2019. We retained a total of 14,186 pairs of TAZs’ 
interactions for further analysis, focusing on instances 
where the daily average intensity exceeded 100, aiming 
to identify typical temporal patterns. For each pair, the 
bidirectional interactions generally exhibit different diur-
nal temporal curves. A typical example is the commuting 
flows between residential areas and workplaces 
(Figure 7(a). These flows demonstrate notable asymme-
try, with morning peak and the evening peak corre-
sponding to home-to-work and work-to-home 
commuting flows. Through a deeper examination on 
the temporal curves, spatial interactions with richer 
semantics can be identified. Figure 7(b,c) depict two 
special examples. In general, the morning peak for 
home-to-work commutes occurs around 8 am 
Figure 7(a). However, some commuting flows exhibit 

morning peaks around 10 am, as shown in Figure 7(b). 
It has been proven that most destinations of these flows 
are hi-tech firms, which allow employees to adopt flex-
ible working hours. In Figure 7(c), the peak appears 
around 12 pm, representing spatial interactions 
between tourist spots, such as the Summer Palace and 
the Temple of Heaven. The temporal patterns reveal 
a simple fact that many tourists visit two places in 
one day and transfer at noon time.

In tourism research, spatial interaction semantics 
are valuable to understand tourist mobility between 
attractions. In the second case study, we collected 
geo-located travel blogs from Qunar.com (https:// 
www.qunar.com/). The website requests travel blog-
gers to manually input POIs to record the places 
they visit during their travels. The background infor-
mation, such as departure date, duration, partners, and 
consumption, is also recorded in the blog data. 
Semantics related to spatial features, temporal fea-
tures, symmetry features, as well as statistics based 
individual flows can be clearly highlighted through 
the tourist mobility analysis using the data set.

Regarding temporal features, four spatial interaction 
networks of different seasons were built according to the 
departure dates recorded in travel blogs. A noteworthy 
interaction comes from Prince Gong’s Mansion to the 

Figure 6. Two main approaches to characterizing place attributes according to the semantics of spatial interactions. (a) A simplified 
schema of inter-place spatial interaction network. (b) Approach #1: aggregating all relevant interactions (even individual-level flows) 
for a given place and characterize each place with statistical measures. (c) Approach #2: extracting features that can explain place 
attributes from spatial interactions with representation learning.

160 Y. LIU ET AL.

https://www.qunar.com/
https://www.qunar.com/


Shichahai (Park) in the ‘autumn’ network see Figure 8(a). 
Both of these locations are famous for viewing the fall 
scenery (e.g. remnants of lotus) in Beijing. Another special 
interaction comes from the Chairman Mao Memorial Hall 
to Tiananmen Square in the ‘winter’ network see 

Figure 8(b). Chairman Mao’s birthday anniversary is in 
winter, when many tourists come to the Memorial Hall 
to pay their respects. This evidence allows the Memorial 
Hall to interact more strongly with the neighbouring 
popular attraction Tiananmen Square in winter.

Figure 7. Understanding spatial interaction semantics from a diurnal variation perspective. Given a spatial interaction between two 
places, the occurrence time of maximum flow volume is an important semantic feature for understanding the spatial interaction as 
well as the two places.
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We also built four spatial interaction networks 
according to the bloggers’ travel partner properties. 
These networks can be used to demonstrate how the 
spatial structure differs when considering SIS expressed 
by travel partners. For example, the route from 
Nanluogu Lane to Yandaixie Street is popular among 
solo travellers see Figure 8(c). The two related attrac-
tions are both ‘Hutongs’ (a special type of narrow alley 

or lane built in ancient Beijing), which are quite suitable 
for a solo stroll to soak up the city’s atmosphere. 
Additionally, the movements from Qianmen Street to 
the Temple of Heaven are highlighted in the ‘couples’ 
network see Figure 8(d), while this interaction is not 
prominent in the other networks. In the real world, the 
two places involved in this interaction are all popular 
tourist hotspots for couples.

Figure 8. Spatial interactions in the tourism context located in Beijing. Networks are differentiated according to the seasons (spring, 
summer, autumn, and winter) and the travel partner(s) (none, significant other, family members, and friends). Subfigures (a) to (d) 
illustrate networks with edges that are typically different compared to networks of the same category. The top 10 edges by weight in 
each network are marked in red.
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Empirical tourism research relies on capturing impli-
cations from case studies to assist tourism stakeholders, 
particularly marketers, in their decision-making. 
Obviously, SIS extracted from tourism flows can effec-
tively help stakeholders improve their decisions. 
Specifically, the semantics of the spatial interactions 
between tourism attractions are valuable in designing 
combined marketing or precise marketing strategies 
(Mou et al. 2020). Such strategies may be put into prac-
tice in the aforementioned case by opening some ‘love 
hotels’ as necessary between Qianmen Street and the 
Temple of Heaven. In Autumn, the visual marketing of 
fall scenery should be enhanced at attractions with nat-
ural landscapes such as Shichahai (Park). It is worth 
noting that marketers are not the only type of tourism 
stakeholders, and the same spatial interaction may also 
have different ‘semantics’ for different types of tourism 
stakeholders. For example, for (potential) tourists, spatial 
interaction analysis can help their route planning by 
enabling them to know which routes are popular or 
unpopular for others. Tourism managers might be 
more concerned with easing and regulating the travel 
flows corresponding to high-intensity spatial interac-
tions rather than recklessly attracting more visitors 
therein.

The SIS can also be extracted from spatial and sym-
metry features in the second case. Figure 9 shows the 
distribution of the geographical distance and the (direc-
ted) spatial interaction intensity between the attractions. 
The figure demonstrates that the spatial interactions 

with larger intensities are often relatively short in length, 
indicating that the spatial interactions in the tourism 
context are likely to be influenced by the distance 
decay effect. Additionally, the intensity correlation coef-
ficient for spatial interactions with the same connection 
nodes but different directions is 0.417, showing the 
asymmetry feature of spatial interactions. This may be 
due to the following facts: (1) the ease of access or 
transportation options may vary in different directions, 
affecting how tourists visit attractions; (2) tourists have 
the consistency to follow a particular movement pattern, 
leading to variations in the number of tourists at attrac-
tions in different directions; and (3) different directions 
have unique platial characteristics that attract tourists.

Similar to our findings in the tourism applications, 
Leung et al. (2012) pointed out that the structure of 
the attraction interaction network presented by over-
seas tourists in Beijing has changed significantly due to 
the holding of the Beijing 2008 Olympic Games. Zeng 
(2018) found that the destination interaction networks 
presented by free independent tourists (FITs) and group 
package tourists would have different structural pat-
terns. In addition, many scholars have also identified 
other potential impacts of spatial interaction semantics 
in tourism research. For instance, Jin et al. (2018), Liu 
et al. (2023), and Xu et al. (2021) found that spatial 
interaction networks in the tourism context vary by 
tourists’ trip lengths, modes of transportation, and 
nationalities. These studies confirmed the value of SIS 
in tourism studies.

Figure 9. Distance-intensity distribution of spatial interactions.
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7. Conclusions

Spatial interaction is a classic topic in geographical stu-
dies. Because the storage complexity is O(n2), the cost of 
collecting spatial interactions is high, which limits its 
application in fine spatio-temporal resolution scenarios. 
The approach of social sensing offered by multi-source 
big data supports fine-grained measurement of space 
interactions. However, existing studies often aggregate 
individual-level movements or connections to obtain the 
interaction intensity between two places, which aligns 
with the traditional representation and analysis methods 
of macro-level interactions. For example, using trajec-
tories extracted from social media data, it is possible to 
measure the interaction intensity between two cities, 
yielding results that coincide with spatial interactions 
constructed using traditional data sources (e.g. air passen-
ger flows) in terms of data models and analysis methods. 
The drawback of this aggregation approach is the omis-
sion of detailed interaction semantic information, thereby 
not fully leveraging the advantages of big data.

This research calls attention to spatial interaction 
semantics, which play a significant role in providing 
a detailed characterization of spatial interactions and 
even the attributes of places. For instance, when two 
pairs of places have an equal interaction intensity based 
on human movements, the differences in various fea-
tures such as the time of travel (morning or afternoon), 
purpose and mode of travel, age composition of travel-
lers, and travel frequency, can help us to infer the under-
lying semantics, which deepen our understanding of the 
relationships between and attributes of the places. We 
therefore emphasize the importance of SIS and suggest 
that when measuring spatial interactions based on social 
sensing data, it is beneficial to enrich SIS from multiple 
perspectives, including spatial, temporal, symmetry, and 
micro-statistical features, in addition to intensity. 
Notably, many trajectory datasets are ‘thin data’ and 
lack semantic information. It is thus necessary to infer 
additional information using appropriate machine learn-
ing methods and construct semantic trajectories to 
enrich SIS. Although this research pays more attention 
to spatial interactions measured by human movements, 
which are in general much richer and valuable, displace-
ments of any objects such as goods or traffic flows (c.f. 
the example in Section 3.3), and ‘movements’ in virtual 
spaces, can also enrich SIS, following the proposed 
framework.

Based on SIS, a spatial interaction network with 
semantics can be constructed. Compared to conven-
tional binary 0/1 topology networks or weighted net-
works based on interaction intensity, it provides a more 
comprehensive representation of spatial interactions, 

enabling the analysis of correlations between different 
features, such as the relationship between travel pur-
pose and travel frequency. Furthermore, by aggregating 
the SIS of a place or introducing representation learning 
methods based on the interaction network, we can vec-
torize places’ properties, thereby supporting specific 
application scenarios.
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