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A B S T R A C T   

Urban greenness is critical in evaluating urban environmental and living conditions, significantly affecting 
human well-being and house prices. Unfortunately, satellite imagery from a bird-eye view does not fully capture 
urban greenness from a human-centered perspective, while human-perceived greenness from street-view images 
heavily relies on road networks and vehicle accessibility. In recent years, scholars started to explore greenness 
measurements from a simulative perspective, among which the simulation of the Viewshed Greenness Visibility 
Index (VGVI) received wide attention. However, the simulated VGVI lacks a comprehensive assessment. To fill 
this gap, we designed a field experiment in Fayetteville, Arkansas, by collecting 360-degree panoramas in 
different local climate zones. Further, we segmented these panoramas via the state-of-the-art DeeplabV2 neural 
network to obtain the Panoramic Greenness Visibility Index (PGVI), which served as the ground-truthing human- 
perceived greenness. We assessed the performance of VGVI by comparing it with PGVI calculated from field- 
collected panoramas. The results showed that, despite the disparity of performance in different local climate 
zones, VGVI highly correlates to the PGVI, indicating its great potential for various domains that favor urban 
human-perceived greenness exposure.   

1. Introduction 

Urbanization has accelerated globally since the beginning of the 21st 
century. In 2021, 57 % of the world’s population was inhabiting urban 
areas, while the percentage for North America was much higher, nearly 
reaching 75 % (World bank, n.d.). The rapid growth of the urban pop-
ulation accelerated the expansion of the urban and metropolitan areas, 
leading to a big challenge for urban planning and management, espe-
cially for the maintenance and development of greenspace (Haaland and 
van den Bosch, 2015; Muhamad Nor et al., 2021; Wei et al., 2022). 

Urban greenness (i.e., vegetation) is an essential criterion for eval-
uating the living environment in various aspects of urban life. From an 
environmental point of view, urban greenness plays a vital role in 
absorbing air pollution (Currie and Bass, 2008), relieving the urban heat 
island effect (Gunawardena et al., 2017; Qiu et al., 2013), and reducing 
noise (Dzhambov and Dimitrova, 2014). In addition to its environmental 
effects, urban greenness has economic influences in cities and affects 

housing prices and city attractions. Previous studies showed that 
appealing urban greenness caused positive implications on nearby house 
prices by providing attractive amenities (Daams et al., 2019) and 
contributing to higher life satisfaction for residents (Gintoli et al., 2020; 
Wu et al., 2022). Furthermore, unevenly distributed urban greenness 
can be closely related to race and ethnicity issues (Heynen et al., 2006) 
that certain racial/ethnic minorities and disadvantaged groups (e.g., 
lower income) have access to fewer greenspace (Boone et al., 2009), 
which deserves stakeholders’ attention and more consolidative sus-
tainability strategies to improve the quality of community (Wolch et al., 
2014). 

Urban greenness is also considered to be crucial for human health. 
Yuan et al. (2021) utilized a meta-analysis involving eight studies and 
concluded that the greater exposure to urban greenness leads to a lower 
risk of mortality by cardiovascular diseases. Similar outcomes were also 
demonstrated by Kondo et al. (2018) and Twohig-Bennett & Jones 
(2018). In addition, living in a greener place also benefits blood 
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pressure, blood glucose, body mass, and even low birth weight (Yang 
et al., 2021a). Shin et al. (2020) showed that enhanced exposure to 
urban greenness could reduce anxiety and sleep disorders by opposing 
computer screen use for long hours. Besides, urban greenness can inspire 
people to do more physical activities. Research indicated that more 
exposure to urban greenness in the community could result in more 
outdoor activities in all age groups, including children (Lambert et al., 
2019), adults (Lambert et al., 2019; Thomsen et al., 2018), and elderly 
groups (de Keijzer et al., 2020). 

The assessment of urban greenness has seen significant improve-
ment. In the early days, most assessing methods were based on satellite- 
based imagery from a bird-view perspective (Bai et al., 2022; Franco and 
Macdonald, 2018; Qian et al., 2015). Satellite imagery brings an over-
view of spatial distribution of green and non-green space, which can 
help estimate the macroscopical environmental effect of urban green-
ness, however, it cannot provide detailed guidance for assessing housing 
prices or human health enhancement because it fails to reflect the 
greenness from a human-eye aspect (Labib et al., 2021). How to derive 
visible greenness from the human eye has become a hot research topic. 

With the development of street view images, recent studies proposed 
photo-based urban greenness assessment from a profile view by 
extracting the greenness level from street view images (Biljecki and Ito, 
2021; Dong et al., 2018; Hu et al., 2021; Li et al., 2015; Li and Ratti, 
2018; Lu, 2019). However, photo-based urban greenness is only acces-
sible where street-view vehicles are reachable (Labib et al., 2021). 
Simulated urban greenness, a geospatial data-based method to calculate 
greenness, can overcome such challenges (Brinkmann et al., 2022; Labib 
et al., 2020, 2021). The geospatial datasets are commonly used geo-
spatial data generated from unmanned aerial vehicle mapping systems. 
The computational representation of urban green spaces emulates the 
human perspective within a three-dimensional environment, offering 
comprehensive coverage. This digital approximation has the potential to 
supply highly detailed distributions of green spaces, thus providing 
invaluable data for urban planning and ecological analysis (Brinkmann 
et al., 2022; Wang et al., 2019; Yu et al., 2016). However, the lack of 
comprehensive evaluation of the simulated urban greenness hinders its 
applications, especially the assessment in different urban settings. As 
proposed by Labib et al. (2021), an extensive empirical validation 
involving large-scale ground truthing would significantly enhance the 
reliability and applicability of the simulated greenness visibility model. 
The development of a high-resolution, eye-level urban greenness dis-
tribution with comprehensive coverage is pivotal in formulating more 
insightful recommendations for urban planning and public health ini-
tiatives. Consequently, there is an immediate necessity to utilize a 
standardized and rigorously verified methodology for the evaluation of 
urban greenness. 

In this study, we aim to conduct a comprehensive evaluation of the 
simulated urban greenness and investigate its adaptation under different 
Local Climate Zones (LCZs), proposed by Demuzere et al. (2022), as a 
widely used categorization of urban environments. To achieve these 
objectives, we applied a recently proposed simulation of the viewshed 
greenness visibility index (VGVI) to our study site, i.e., Fayetteville, 
Arkansas in the United States of America (U.S.). This index adopted both 
viewshed analysis and distant decay function (Labib et al., 2021), which 
has brought wide attention but has not been comprehensively assessed. 
We collected panoramas within complex urban settings to derive a 
panoramic greenness visibility index (PGVI), and further used the PGVI 
as the ground truth to evaluate the performance of VGVI. The particular 
contributions of this work are summarized as follows:  

1) We calculated the VGVI of Fayetteville at the fine-grained level (one- 
meter resolution) from the human-eye level using open-sourced 
geospatial data, i.e., Lidar point cloud, satellite-based earth obser-
vation, and building footprints.  

2) We considered different urban settings based on the new concept of 
LCZs to collect 858 panoramic photos in the field experiment based 

on both vehicle-reachable and walk-reachable locations. Then, we 
calculated the PGVI in the collected panoramas by a state-of-the-art 
segmentation method, i.e., Deeplabv2 (Cheng et al., 2020).  

3) We assessed the VGVI by comparing it with the PGVI. In particular, 
we detailed the evaluation in different LCZs and explored the uni-
versality of VGVI under various urban settings. 

4) We discussed the importance and current challenges of the simula-
tion of VGVI and proposed its potential applications. 

2. Background 

2.1. From bird-view to street-view greenness 

Remote Sensing is a commonly used technique to assess and map 
urban greenness (Yin et al., 2021). Although quantifying urban green-
ness with high-resolution data (Franco and Macdonald, 2018; Qian 
et al., 2015) or enhanced computational neural networks (Bai et al., 
2022) were proposed in recent years, some shrubs and lawns covered by 
canopy are still hard to be detected. Besides, remote sensing measure-
ments have their inherent limitation in that only the bird’s view from 
top-down sensors is available, which leads to missing information such 
as the layout and height of urban buildings. Yang et al. (2009) showed 
that the greenness observed in a human view depends on the arrange-
ment of buildings and roads. Through a thorough analysis, Jiang et al. 
(2017) discovered that the urban greenness derived from aerial tree 
cover density was inconsistent with the urban greenness derived at a 
human eye level. Those studies emphasized the importance of eye and 
site visits to measure urban greenness. 

Thus, quantifying urban greenness from a profile view is more 
relevant to human’s actual perception of greenness. Meitner (2004) 
designed questionnaires to rate urban greenness access from human 
perception. However, those questionnaires provided a limited under-
standing and were constrained to uncertain response criteria. Yang et al. 
(2009) manually extracted the green pixels from four-direction color 
photos captured at a ground location to develop a green view index. 
However, this method is time-consuming and labor consuming. Inspired 
by extracting the green pixels from the color photos, Li et al. (2015) 
modified the green view index to extract the green vegetation pixels 
from google street view images and proposed the street-view green view 
index by separating the 360-degree panoramic street-view images into 
six directions horizontally and three view angles vertically. Larkin & 
Hystad (2018) stated that the techniques of the street-view green view 
index provided specific knowledge about urban greenness exposures. In 
recent years, the street-view green view index has developed as a 
state-of-the-art methodology to assess urban greenness (Chen et al., 
2020; Dong et al., 2018; Xia et al., 2021; Zhang et al., 2021) and has 
been applied in different domains, such as human activities (Larkin and 
Hystad, 2019; Lu, 2019), socioeconomic conditions (Wang et al., 2021) 
and house price models (Yang et al., 2021a). 

2.2. A new human-view frontier: simulation of visible greenness 

Although the street-view green view index brings some new hori-
zons, a significant limitation is that the availability of street-view images 
depends on road networks and vehicle accessibility (Rzotkiewicz et al., 
2018). Moreover, the images of big cities are updated more frequently 
than the images of small towns. Therefore, a reliable approach is still 
needed to estimate community-level greenness in a robust and timely 
manner (Labib et al., 2020). 

Several studies have started to explore the simulated urban green-
ness from the human eye level to issue the limitations of the street-view 
green view index. Viewshed analysis, defined as a geographical area 
visible from a location, has been used to assess the landscape visibility in 
different aspects, such as the aesthetic potential of the landscape (Sah-
raoui et al., 2016) and urban design evaluation (Yang et al., 2007). 
Tabrizian et al. (2020) calculated the viewshed of foliage to provide 
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suggestions for urban greenness planning. Nutsford et al. (2015) 
considered the vertical degrees of visibility to adjust the standard 
ground-level viewshed to an eye-level viewshed. Such simulations of 
urban greenness are not constrained to specific locations and are suit-
able to measure urban greenness at a community level (Labib et al., 
2020; Labib et al., 2021). Besides, the viewshed analysis was also used at 
viewpoints of different floors to estimate urban greenness in a 
three-dimensional (3D) central business district (Wang et al., 2019; Yu 
et al., 2016). However, these analyses require the setting of observation 
points or platforms according to the 3D building morphology, posing 
challenges to its applicability. In addition, the perspective effect of the 
human eye allows the eye to perceive a more considerable prominence 
(Chen et al., 2015; Kumsap et al., 2007) and capture more information 
(Bishop, 2016; Kumsap et al., 2007) from near objects. Built upon the 
previous studies, Labib et al. (2021) developed a new integrated simu-
lation of VGVI to assess urban greenness, which gained wide attention. 
In the simulation of VGVI, not only the viewshed analysis was applied, 
but a distant decay function was also incorporated to simulate the effect 
of the human eye perceptron discrepancy within various distances. In 
sum, the simulation of VGVI provides a new frontier for assessing urban 
greenness, and we choose the VGVI as our main focus to evaluate its 
accuracy. 

2.3. The promising of VGVI 

Viewshed of urban greenness includes all vegetational points in the 
line-of-sight at a given site and eliminates all the other points beyond the 
ground or blocked by terrain and buildings (Wang et al., 2019; Yu et al., 
2016). Fig. 1 presents the concept of VGVI. From the reader’s perspec-
tive (an angle of a high squint), a sizeable green area can be observed, 
including the trees and shrubs both on the sidewalk and behind the 
buildings. In contrast, assuming the observer stands at the pedestrian 
crossing, only green belts (i.e., the grass and trees) on both sides of the 
road are visible to the observer. The green space behind the buildings is 
invisible to this observer due to sight blocking. Therefore, the visible 
greenness in certain locations is less than expected, although the 
neighborhood is within a green area (Labib et al., 2021). 

VGVI implemented Bresenham’s algorithm (Bresenham, 2010) to 
launch the line-of-sight. The viewshed analysis for a given observer spot 
generated a binary matrix indicating which cells are visible to the 
observer. Based on experimentation and expert opinions, a distant decay 
function was applied to mitigate the bias caused by the effect of the 
decrease in perceived prominence of features with growing observer 
distance (Labib et al., 2021). 

The inputs of VGVI simulation include the digital surface model 
(DSM) dataset, the digital terrain model (DEM), and the green or non- 
green space. These inputs are relatively easy to attain on a global 
scale or a local scale with a finer resolution, showing the considerable 
potential of its application on large-scale urban greenness assessment. 
However, the performance of VGVI has not been thoroughly tested, 
especially in the different urban types. Therefore, in this study, we 
designed a field experiment to evaluate the validity of VGVI. 

3. Methods and materials 

3.1. Case study area 

We selected Fayetteville to collect the ground-truth 360-degree 
panoramas by a field experiment to compute the PGVI and further 
calibrate the VGVI. Fayetteville is the second-biggest city in Arkansas, U. 
S. (Fig. 2a). Based on the US Census data (Census, 2021), the city has a 
total population of 95,230 and a total area of 143 km2. Fayetteville 
exemplifies a substantial number of mid-sized cities in the United States, 
making it an ideal case study for our research. Its selection as our 
investigation site facilitates a thorough and significant evaluation, 
thereby yielding robust and transferrable insights. We hypothesized that 
VGVI might perform differently in different land use and land cover, and 
thus we evaluated the performance of VGVI to measure greenness in 
Fayetteville in different Local Climate Zones (LCZs). Demuzere et al. 
(2022) released a global map of LCZs to assist the urban-scale envi-
ronmental science and analysis. LCZs reflect the association between 
urban land cover and land use. The map generally comprises ten built 
types and seven natural land cover types (Table 1). 

In this study, LCZs were scaled to Fayetteville (Fig. 2b), which in-
cludes five built types (i.e., compact lowrise, open midrise, open lowrise, 
large lowrise, and sparsely built) and five natural land cover types (i.e., 
dense trees, scattered trees, low plants, bare soil or sand, and water). 
Corresponding with the original LCZ index, the five built types of 
compact lowrise, open midrise, open lowrise, large lowrise, and sparsely 
built are named LCZ 3, 5, 6, 8, and 9, respectively. The dense trees, 
scattered trees, low plants, bare soil or sand, and water correspond to 
LCZ 11, 12, 14, 16, and 17, respectively (Table 1). 

3.2. Experimental design 

To assess the performance of VGVI, we designed a field experiment to 
collect the 360-degree panoramas and further compute the Panoramic 
Greenness Visibility Index (PGVI) from these panoramas, especially for 
those locations that are not vehicle-accessible. The sample collecting 
date happened in the green season of Fayetteville, mainly in the summer 
of 2022. The PGVI served as the ground-truthing eye-level greenness in 
Fayetteville. Fig. 3 presents the workflow of our experiment. We intro-
duce essential steps in the following subsections. 

3.2.1. Sampling equipment 
We used the Ricoh Theta V 360 camera, a camera that captures 360- 

degree panoramas with a resolution of 5.5k. The advantage of this 
camera is that once 360-degree photos are captured, well-stitched 
panoramic images can be generated in its default mobile phone appli-
cation. Although this camera has a built-in Global Positioning System, 
higher positional accuracy is preferred. Therefore, we used the Qstarz 
BT-Q1000XT GPS Receiver, which ensures accuracy within 3 m, to re-
cord the precise location of each panorama. We also applied a tripod to 
stabilize the camera while holding the camera at the height of eye level 
(1.7 m). 

Fig. 1. Conceptual display of Viewshed Greenness Visibility Index (VGVI).  
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3.2.2. Sampling protocols 
The sample sites were randomly selected within each LCZ in our 

study area. Water bodies were ignored for site selections, given that 
water bodies are not usually accessible to humans. Besides, only a few 
pixels in our area contain the LCZ of bare soil or sand; thus, no random 
sample points were allocated to such types of LCZs. So, eight LCZ types 
were considered in our study. The detailed procedure of the panorama 
collection is described below:  

(1) Identifying the area for each type of LCZ in Fayetteville (a total of 
eight LCZ types)  

(2) Creating 100 random sampling points along the street for each 
LCZ (a total of 800 locations)  

(3) Collecting panorama for each random pointed location or its near 
location for convenience and safety  

(4) Geotagging the panoramas and importing them to Google MyMap 
for documentation (shorturl.at/LRV29) 

Although sampling locations are randomly generated along the street 
network, our methodology prioritizes safety by ensuring data collection 
occurs on the sidewalk when the sampling point is positioned on a main 
road. Furthermore, our sampling design strategically encompasses a 
multitude of samples within internal communities, areas often over-
looked by street-view vehicles due to the smaller scale of these roads.  
Fig. 4 presents the spatial distribution of sample sites. Since the open 
lowrise climate zone is scattered throughout the city when we tried to 
collect the samples in other LCZs, some samples were not easily reach-
able, so we chose a nearby location to collect the data for convenience. 
Thus, several samples from other LCZs fell into the open lowrise climate 
zone, resulting in 158 samples for this LCZ. A total of 858 panoramas 
were eventually obtained in our experiment. 

3.2.3. Calculation of PGVI from greenness segmentation 
Extracting the green pixels from a panorama is a precondition for 

generating quantitative information about vegetation. In this study, we 
applied a pre-trained DeepLab2 model (Cordts et al., 2016) to extract the 
urban greenness from the panoramas. After obtaining the pixel-based 
feature map, the non-vegetation category in the semantic labels was 
removed, and PVGI can be calculated as the following: 

PVGIdeeplab2 =
NoPveg

NoPtotal
(1)  

where NoPveg is the number of vegetation pixels and the NoPtotal is the 
total number of pixels in the panoramas. 

Fig. 2. (a) Study area city of Fayetteville (data 
Source: City of Fayetteville (n.d.)), (b) LCZs distribution of Fayetteville. 

Table 1 
The summary of Local Climate Zones (Demuzere et al., 2022). Check marks in 
the table mean these LCZ types are available in Fayetteville; cross marks mean 
otherwise.  

Climate 
zone types 

LCZ 
number 

Meaning Definition Fayetteville 

Built land 
cover 
types 

1 Compact 
highrise 

Dense mix of tall 
buildings to tens of 
stories 

×

2 Compact 
midrise 

Dense mix of midrise 
buildings (3–9 stories) 

×

3 Compact 
lowrise 

Dense mix of lowrise 
buildings (1–3 stories) 

√ 

4 Open highrise Open arrangement of 
tall buildings to tens of 
stories 

×

5 Open midrise Open arrangement of 
midrise buildings (3–9 
stories) 

√ 

6 Open lowrise Open arrangement of 
lowrise buildings (1–3 
stories) 

√ 

7 Lightweight 
lowrise 

Dense mix of single- 
story buildings 

×

8 Large lowrise Open arrangement of 
large lowrise buildings 
(1–3 stories) 

√ 

9 Sparsely built Sparse arrangement of 
small or medium-sized 
buildings in a natural 
setting 

√ 

10 Heavy 
industry 

Lowrise and midrise 
industrial structures 
(towers, tanks, stacks) 

×

Natural 
land 
cover 
types 

11 Dense trees Heavily wooded 
landscape of deciduous 
and/or evergreen trees 

√ 

12 Scattered 
trees 

Lightly wooded 
landscape of deciduous 
and/or evergreen trees 

√ 

13 Bush, scrub Open arrangement of 
bushed, shrubs, and 
short, woody trees 

×

14 Low plants Featureless landscape 
of grass or herbaceous 
plants/crops 

√ 

15 Bare rock or 
paved 

Featureless landscape 
of rock or paved cover 

×

16 Bare soil or 
sand 

Featureless landscape 
of soil or sand cover 

√ 

17 water Large, open water 
bodies such as seas and 
lakes 

√  
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3.3. VGVI Calculation 

To set the eye-level view aspect, we considered a modified observer 
height of 1.7 m at a given location to launch the LOS and set the 
maximum view distance as 550 m based on the method from Labib et al. 
(2021). DSM and DEM are derived from LiDAR and provided by US 

Geological Survey (Dollision and Maxwell, 2019). Green and non-green 
space datasets show whether a specific location in a study area belongs 
to vegetation or non-vegetation. Following the early study (Braun and 
Herold, 2004), we calculated green and non-green spaces from 
high-resolution normalized difference vegetation index (NDVI) derived 
from the National Agriculture Imagery Program (NAIP) in the growing 

Fig. 3. Experimental workflow of this study.  

Fig. 4. Spatial distribution of the sampling sites and the local climate zones (LCZs) in Fayetteville, Arkansas.  
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season of 2022. The building footprints of Fayetteville, based on the 
remote sensing imageries from 2019 to 2020 licensed by Microsoft, were 
used to mask the building locations, as in our model, the observers are 
not allowed to stand on the top of buildings. 

According to Labib et al. (2021), viewshed analysis and distant decay 
served as the main component parts of VGVI modeling. For any given 
observer spot, a matrix of visibilities that depicts visible information is 
generated through the viewshed analysis, and a matrix of weights is 
generated through the distant decay function. The products of these two 
matrixes of visibilities and weights contribute to the VGVI. The mathe-
matical formation of VGVI follows: 

VGVIj =

∑n
p=1Gpj × df pj

(∑n
p=1Gpj × df pj

)
+ (

∑m
q=1Vqj × df qj)

(2)  

where VGVIj is the greenness visible index value at any observer location 
j; p represents the pth visible green cell for the observer location; q 
represents the qth visible non-green cell for the observer location; n and 
m, respectively, represent the total number of visible green and non- 
green cells. Gpj is the pth visible green cell, Vqj is the qth visible non- 
green cell, and dfpj stands for the pre-calculated weights by distance 
decay function at the pth visible green cell for observer location j. 
Similarly, dfqj represents the weights at the qth visible non-green cell. 
Thus, the VGVI, ranging from 0 to 1, represents the proportion of the 
visible green cells over the total visible cells. 

3.4. Evaluation of VGVI 

In this study, we compared the distribution pattern of VGVI and bird- 
eye greenness (i.e., green and non-green spaces) derived from NDVI 
(bird-view) in Fayetteville to explore how bird-eye greenness is different 
from human-eye greenness. Moreover, we also explore the correlation 
between field-collected PGVI and simulated VGVI, aiming to shed light 
on the performance of VGVI. In view of the pair-wise relationship be-
tween PGVI and VGVI, we have additionally employed the Two One- 
Sided Test (TOST), a paired equivalence test designed to validate the 
statistical significance of their similarity, as proposed by Williams 
(1959). We adopted a 0.01 significance level for all subsequent statis-
tical evaluations to ensure rigorous examination. 

The TOST procedure involves a modification of the conventional 
two-sided Student’s t-test by reversing the roles of the null and alter-
native hypotheses (Mara and Cribbie, 2012). In the TOST procedure, if θ 
represents the margin of equivalence, the null hypothesis asserts that the 
population mean difference score (μ1 − μ2) falls outside a predefined 
equivalence interval (H01 : μ1 − μ2 ≥ θorH02 : μ1 − μ2 ≤ − θ), suggest-
ing that the two groups or conditions are considered non-equivalent. 
Consequently, the alternative hypothesis asserts that the mean differ-
ence score is sufficiently small to be within the determined equivalence 
interval, suggesting that the population means are indeed equivalent 
(H1 : − θ < μ1 − μ2 ≤ θ). The null hypothesis is characterized by two 
simultaneous predictions, both of which must be rejected to conclude 
that the mean differences in paired observations are equivalent. H01 
would be rejected if t1 ≥ − tθ,n− 1 and H02 would be rejected if t2 ≥ −

t1− θ,n− 1: 

t1 =
x1 − x2 − θ

Sdiff
/ ̅̅̅̅̅̅̅̅̅̅̅

n − 1
√ andt2 =

x1 − x2 − (− θ)
Sdiff

/ ̅̅̅̅̅̅̅̅̅̅̅
n − 1

√ (3) 

where x1 and x2 are the sample means, the Sdiff is the standard de-
viation of the difference scores, and n is sample size. 

4. Results 

4.1. Greenness segmentation from panoramas 

Fig. 5 presents the PGVI calculated from the greenness extraction 
with different green tones of dots. The average PGVI for all the sampling 
points is 0.13, meaning the average greenness derived from the pano-
ramas is 13 %. The area with more dense buildings, such as the down-
town and the University of Arkansas, exhibits a lighter green tone than 
the suburban area, indicating their lower visible greenness. The building 
acts as a major factor that obstructs sight (Biljecki and Ito, 2021). The 
histograms in Fig. 5 show the distribution of PGVI in each LCZ. In 
general, LCZ 11 (i.e., dense tree), shows a relatively higher greenness 
level with an average PGVI of 0.293, and LCZ 14 (i.e., low plants), shows 
a lower greenness level with an average PGVI of 0.058. For the built 
types (i.e., LCZ3–9), the PGVI is around 0.1. 

Fig. 6 presents five selected cases. From the scope view listed on the 
right of the PGVI distribution map, the locations (a)-(e) represent LCZ 8, 

Fig. 5. The PGVI distribution from collected panoramas in our study area via Deeplabv2 segmentation. In the histograms, the x-axis denotes PVGI, and the y-axis 
denotes the count of samples. 
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LCZ 9, LCZ 14, LCZ 3, and LCZ 11, respectively. From case (a) in LCZ 8 (i. 
e., large lowrise zone), the pavement occupies an extensive area of the 
panoramas, which reduces the visible greenness and leads to the lowest 
average PGVI of LCZ 8 within the five built types. Case (b) in LCZ 9 
shows the segmentation result at a location on a sidewalk. We observe 
that the segmentation for trees and shrubs outperforms the segmenta-
tion of grass, especially for the areas where the grass presents a 
yellowish tone. Case (c) in LCZ 14 with low plants shows an under- 
construction area. Case (d) in LCZ 3 shows the photo collected at a 
location around the downtown square, where the building obstructs 
human sight within one or two blocks, thus leading to low greenness 
accessibility. We observe a satisfactory segmentation performance in 
case (e) of LCZ 11 (i.e., dense trees). 

4.2. VGVI distribution 

In our study area, we simulate VGVI in more than 235 million 
observing locations, using the high-performance computer and R pro-
gramming, running on the Linux operating system. 

Fig. 7(a) shows the spatial distribution of VGVI in the study area. The 
average value of VGVI is 0.49, with a standard deviation of 0.36. The 
average value reveals that nearly 50 % of greenness visibility appears in 
Fayetteville, and this percentage is close to the rate of forestland (56 %) 

in Arkansas (Chhetri and Pelkki, 2022). We also observe that the spatial 
distribution of VGVI is uneven and heterogeneous. Typically, the highest 
values occur in parks and natural areas, such as Centennial Park, Kessler 
Park, and Wilson Springs Nature Preserve. Despite the high greenness 
visibility in the forest, those areas are hard-to-access places for citizens. 
Low VGVI values occur in the downtown areas, suggesting low green-
ness visibility in these areas. 

Fig. 7 shows a comparison of VGVI (eye-level view) (Fig. 7(a)) and 
the distribution of bird-eye greenness, i.e., green and non-green spaces, 
derived from NDVI (bird-view) in Fayetteville (Fig. 7(b)). In general, 
VGVI shows a similar distribution to bird-eye greenness. The ubiquitous 
compact buildings with less greenness in downtown Fayetteville are 
responsible for the low visible greenness. However, we notice that the 
visible greenness indicated by VGVI is higher than the bird-eye green-
ness. Although dense buildings widely exist in the downtown square, the 
reasonable spatial design of buildings and vegetation can facilitate 
visible greenness (Xiao et al. (2021)). The zoomed area on the top-left 
corner presents a community surrounded by high-level vegetation 
(Fig. 7(b)). We notice that the VGVI for people who live in this com-
munity is lower than anticipated due to the sight blocked by dense 
houses (Fig. 7). 

Fig. 6. Selected five cases, i.e., (a)-(e), of panoramic greenness segmentation from panoramas. The red stars represent the sample locations of these five cases. The 
overlay views represent the overlay of vegetation segmentations (with 60 % transparency) on panoramas. 

Fig. 7. (a) The distribution of VGVI (eye-level view) in Fayetteville; (b) The distribution of bird-eye greenness derived from remote sensing imagery (bird-view) in 
Fayetteville. 
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4.3. The correlation between VGVI and PGVI 

Fig. 8 presents the correlation between VGVI and ground-truthing 
PGVI from the collected panoramas. A significant positive correlation 
(0.5) based on the TOST equivalence test is observed for all the sampling 
cases, suggesting the robustness of VGVI in simulating visible greenness 
in complex urban settings. We notice that the PGVI values are generally 
below 0.5. Several outliers are plotted in the line of y = 1(or y = 0). 
Studies have shown that the VGVI model tends to generate value 1 when 
the observer’s location is under trees (Labib et al., 2020, 2021). We 
assume the value of 0 in VGVI visible green can be attributed to the 
positioning error. In addition, we observe that more sampling points are 
distributed above the dashed reference line, meaning that the VGVI 
tends to be higher than the PGVI. The average VGVI extracted at the 
corresponding sampling points is 0.22, which is higher than the PGVI of 
0.13. Such a phenomenon can be partly explained by the unsatisfactory 
segmentation of grass, as mentioned in Section 4.1. 

When evaluating the results at the LCZ level, we notice that all the 
LCZs show a highly positive correlation between the VGVI and PGVI, 
except for the LCZ 3 (i.e., compact lowrise) and LCZ 14 (i.e., low plants). 
Moreover, based on the marginal density curves, the VGVI demonstrates 
that the visible greenness in the area of natural land cover types (i.e., 
LCZ 11–14) is typically higher than the greenness in the area of built 

types (i.e., LCZ 3–9). This result is consistent with ground-truthing PGVI, 
which also partially demonstrates the robustness of the VGVI. 

Regarding the insignificant results in LCZ3, the existence of dense 
buildings can partly explain the insignificant correlation in LCZ 3, as 
dense buildings pose challenges in extracting VGVI at some sampling 
points. These points might be close to the facilities or objects like cars 
that existed when the aircraft with sensors collected the LiDAR point 
cloud dataset but did not exist when the panoramas were taken. Another 
potential reason is the sensitivity of resolution in LCZ 3, where dense 
buildings are widely distributed. A small error in line-of-site can be 
translated to a large variation of VGVI. In addition, for LCZ 14 (repre-
sented by the light green color in Fig. 8), we notice that the VGVI is 
higher than the PGVI. We believe the grass greenness extraction from 
panoramas is the leading cause of the mismatch between VGVI and PGVI 
within LCZ 14 (low plants). Despite the mismatches in these two LCZs, 
we still believe the VGVI from a 3D urban environment is largely 
consistent with the PGVI collected from panoramas. 

Fig. 8. (a1)–(a8) Scatter plots of simulated VGVI and field-collected PGVI from each LCZ. (b) Scatter plot for all samples from eight LCZs with their marginal density 
plots, and the dots are with 70 % transparency for better view. R means the correlation coefficient of VGVI and PGVI, and the R with * represents the significances of 
TOST equivalent test for the correlation coefficients are at the 0.01 significant level. 

J. Yan et al.                                                                                                                                                                                                                                      



Urban Forestry & Urban Greening 87 (2023) 128060

9

5. Discussion 

5.1. The importance of simulated visible greenness and its potential 
applications 

As important agents in urban environments, urban citizens experi-
ence greenness with their own eyes. Greenness visibility is strongly 
associated with positive health outcomes, as documented in the resto-
ration theory by Kaplan (1995). Most existing greenness availability or 
accessibility studies, however, rely on bird-eye greenness distribution, 
largely detaching from human experience. Such a limitation has been 
gradually noted by many scholars, and a significant number of studies 
have been produced to explore human-perceived greenness in urban 
environments. In this study, we implemented the VGVI model that 
simulated visible greenness under a 3D urban context and investigated 
the performance of VGVI using field-collected panoramas. The results 
pointed to the promising aspects of visible greenness simulation, as the 
simulated results present a high consistency compared with ground 
observations. 

In contrast to street view images that primarily focus on the main 
road, our experiment involves a more flexible and intricate image 
collection process. We prioritize capturing images in locations where 
individuals can safely walk or stand, allowing us to gather a broader 
range of perspectives. From our experiments, we argue that the merits of 
visible greenness simulation lie in the following aspects. First, its 
simulative nature allows the acquisition of visible greenness anywhere 
in a city. Compared to popularly used street-level imagery (e.g., Google, 
Microsoft, or other crowdsourcing street view platforms) whose 
coverage issue has been criticized by many, e.g., Quinn and Alvarez 
León (2019), obtaining visible greenness from a simulation perspective 
presents great applicable potentials, especially in areas where street 
views are not available. Second, the adjustable parameters during the 
simulation offer more flexibility, allowing scholars to examine different 
scenarios. For example, in our experiment, we used a fixed height of 
1.7 m and set the maximum view distance as 550 m, as suggested by 
Labib et al. (2021). Such a setting can be easily modified in other ap-
plications, such as examining the greenness visibility on different floors 
of high-rise buildings (i.e., adjusting the height parameter) or investi-
gating greenness visibility under different weather conditions (i.e., 
adjusting the distance parameter). Third, our results suggest that 
simulated visible greenness and greenness from remote sensing imagery 
are inconsistent, especially in areas with dense buildings due to the 
eyesight blocking effects. As Fayetteville, our experimental site, belongs 
to a mid-size U.S. city, we assume such inconsistency is likely to be 
exaggerated in bigger cities with denser buildings. We consider simu-
lated visible greenness a promising measure for various domains that 
favor urban human-perceived greenness exposure, such as environ-
mental psychology, public health (especially mental health), and urban 
aesthetics. Regarding the urban planning of certain cities, federal or 
state law imposes maximum height on buildings to protect the city’s 
image and unobstructed views of certain landscapes or civic symbols. 
The simulated greenness provides essential support for evaluating the 
impact of building heights and layout on residents’ view of greenness 
and assists planners and stakeholders in proposing strategies to enhance 
residents’ view of nature. Especially for designing and planning new city 
areas, planners can adopt simulated eye-level greenness to optimize the 
layout of buildings and greenspace to improve their overall well-being. 
In addition, we envision a transition of urban greenness inequity studies 
with the support of visible greenness simulation. 

5.2. Challenges in simulating visible greenness in complex urban 
environments 

Despite the promising future of visible greenness simulation, several 
challenges deserve to be mentioned. We notice that such simulation is 
computationally intensive and demands high performance computer 

infrastructure. In our experiment, the VGVI model considers more than 
235 million observing locations when establishing the line-of-site 
calculation in the City of Fayetteville, with a size of 143 km2. Even 
with the support of high-performance computer, obtaining the distri-
bution of simulated visible greenness in this mid-size U.S. city still takes 
hours. The computational demand is expected to increase exponentially 
for larger geographic areas. One of the solutions is to divide the entire 
study area into sub-regions, with each region running its own simula-
tion. Such a strategy allows parallel computing and potentially in-
troduces Graphics Processing Unit for acceleration. However, when 
simulations are running within regions, errors are unavoidable, espe-
cially in areas close to the boundaries of regions (because these 
boundaries prevent the passing of line-of-sight). The challenge of 
computational efficiency in visible greenness simulation deserves more 
attention, and we encourage more efforts toward designing a parallel- 
computing-enabled simulation environment. In addition, urban envi-
ronments are dynamic, with fast changes in landscapes, posing addi-
tional demand for temporal regularity of the input datasets. Three input 
datasets are required for the VGVI model, i.e., DEM, DSM, and bird-eye 
greenness. Ideally, these three datasets need to be collected at the same 
or close temporal frames to ensure an accurate simulation of visible 
greenness. Nonetheless, such coordination of the datasets mentioned 
above is rare, especially with the demand for high-resolution ones. 

Furthermore, it is vital to confront the challenge of assessing the 
generalizability of simulated greenness in case studies beyond Fayette-
ville. A logical progression for our research is to include locations with a 
more diverse array of LCZs or different criteria characterizing urban 
environments. Broadening our research horizons to encompass various 
geographic locales will enable us to evaluate the extensive applicability 
and reliability of the simulated greenness methodology. By pursuing 
further exploration and widening the scope of our research, we can 
enhance our understanding of VGVI performance within diverse urban 
contexts, inclusive of regions with higher population densities and 
complex built environments. 

5.3. Limitations and future directions 

It is important to acknowledge the limitations of this work and 
provide future research directions. In this study, we evaluated the 
simulated greenness using field-collected panoramas in Fayetteville. 
Specifically, we distributed our samples in different LCZs, featured by 
varying urban landscapes. Concentrating our efforts on Fayetteville al-
lows us to acquire data and insights with wide-ranging applicability and 
relevance to comparable urban environments. However, considering 
that Fayetteville is a mid-size U.S. city and does not have certain LCZs 
exclusive for big cities (e.g., the LCZs of “compact highrise” and 
“compact midrise”), the performance of VGVI in dense urban environ-
ments needs to be further exploited. We also encourage more efforts to 
investigate the generalizability of simulated greenness in other study 
cases. 

Second, we collected our panoramas during the summer of 2022, 
when greenness reaches its highest. To make things comparable, the 
simulated visible greenness relies on the NDVI calculated from NAIP 
satellite imagery captured in the growing season of 2022. However, we 
acknowledge that human-perceived greenness changes dramatically 
given different seasons in a year. The visible greenness in summer and 
winter usually presents a vast disparity. Although exploring such a 
disparity is not the focus of this study, we encourage future efforts to 
explore greenness differences across seasons, an often-overlooked issue 
in greenness exposure assessment. 

Third, we observed some model performance issues during the ex-
periments. For example, 

The VGVI model tends to generate value 1 (i.e., 100 % greenness in 
our field of view) when the observer location is under trees, as the po-
sition of the observer falls within the pixel that is labeled green. In real- 
world scenarios, observers under trees should be able to see other 
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objects that are not green. Some potential solutions to the model include 
1) increasing the resolution of DSM and DEM models and 2) creating 
different simulating scenarios when observers’ locations overlap pixels 
labeled as green. However, both solutions demand additional compu-
tational resources, and future studies need to consider the tradeoff be-
tween model performance and computational efficiency. 

Finally, we extracted greenness in the panoramas using a pre-trained 
DeepLab2 model trained on the Cityscapes datasets. Despite DeepLab2 
being considered among the state-of-the-art semantic segmentation 
models, we observed its unsatisfactory performance in grass segmenta-
tion (especially when grass presents a yellowish tone), which translates 
to the higher simulated visible greenness compared to the one captured 
from panoramas. Considering that segmentation performance compar-
ison is out of the scope of this work, we encourage future efforts to test 
other image-based greenness segmentation methods, aiming to provide 
better validation of greenness simulation models. 

6. Conclusion 

This study, conducted in Fayetteville, Arkansas, involves the 
assessment of the performance of simulated visible greenness (VGVI) by 
contrasting it with greenness obtained from field-collected panoramas 
(PVGI). By comparing these two metrics, we affirm the robustness and 
utility of the simulated greenness in quantifying human eye-level visible 
greenness. This research signifies the inaugural comprehensive evalua-
tion of the robustness of simulated greenness, thereby laying a solid and 
scientific foundation for future expansive, potentially nationwide, in-
vestigations. Our findings indicate a statistically significant correlation, 
surpassing the 0.01 significance level, between the simulated greenness 
VGVI and PVGI. When reviewing results at the LCZ level, we observed 
that most LCZs exhibit a significant positive correlation between the 
simulated greenness VGVI and PVGI derived from field-collected pano-
ramas. Despite the variation in performance across different LCZs, we 
posit that VGVI holds substantial promise as a metric across multiple 
domains that prioritize human-perceived greenness exposure, including 
environmental psychology, public health (particularly mental health), 
and urban aesthetics. Given its ability to acquire human-perceived 
greenness in any urban location, unrestricted by the availability of 
street view images, we advocate for expanded exploration of VGVI’s 
potential within various urban green space applications. 
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