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A B S T R A C T   

PM2.5 pollution imposes substantial health risks on urban residents. Previous studies mainly focused on assessing 
peoples’ exposures at static locations, such as homes or workplaces. There has been a scarcity of research that 
quantifies the dynamic PM2.5 exposures of people when they travel in cities. To address this gap, we use cell
phone positioning data and PM2.5 concentration data collected from smart sensors along roads in Guangzhou, 
China, to assess personal travel exposure to on-road PM2.5. First, we extract the trips of cellphone users from their 
trajectories and use the shortest path algorithm to calculate their travel routes on the road network. Second, the 
travel exposure of each user is estimated by associating their movement patterns with PM2.5 concentrations on 
roads. The result shows that most users’ average travel exposures per hour fall within the range of 20 ug/m3 to 
75 ug/m3. Travel exposure varies across users, and 54.0% of users experience low travel exposure throughout the 
day, 25.5% of users experience high travel exposure in the evening, and 20.5% of users experience high travel 
exposure in the afternoon. Furthermore, the impacts of on-road PM2.5 on urban populations are uneven across 
roads. More attention should be given to roads with high PM2.5 concentrations and traffic flows in each period, 
such as Huan Shi Middle Road in the morning, Inner Ring Road in the afternoon, and Xinjiao Middle Road in the 
evening. The findings in this study can contribute to a more in-depth understanding of the relationship between 
air pollution and the travel activities of urban populations.   

1. Introduction 

With economic development and increased car ownership in many 
Chinese cities, vehicle emissions (e.g., particulate matter, nitrogen ox
ides, carbon monoxide, and volatile organic compounds) have become a 
prominent source of urban air pollution in recent years (China Vehicle 
Environmental Management Annual Report, 2018). Among different 
traffic-related air pollutants, PM2.5 is the most detrimental to human 
health (Bowatte et al., 2015) because it can cause respiratory and car
diovascular issues even at very low concentrations (Chen et al., 2008; 
Cohen et al., 2017; Dominici et al., 2006). Personal PM2.5 exposure 
assessment studies have received considerable attention from the per
spectives of health geography and public health. However, most 

previous studies mainly focused on examining peoples’ exposure at their 
homes or workplaces and have neglected the risks from dynamic expo
sure along roads when they travel in the city. Although most people 
spend relatively small amounts of their time travelling, travel exposure 
to PM2.5 still comprises a disproportionately large portion of the indi
vidual exposures to air pollution (Gulliver and Briggs, 2005; Kwan et al., 
2015; Park, 2020; Xu et al., 2019). Therefore, it is necessary to assess 
urban populations’ travel exposure to PM2.5 on their daily travel routes. 

Previous literature on personal PM2.5 exposure can be broadly 
categorized into static residence-based, mobility-based, and big data- 
based approaches. The static residence-based approach assumes that 
people stay at home for the duration of the study. The exposures of 
people are assessed by utilizing the PM2.5 concentrations at their 
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residential locations. Thus, a considerable part of the literature has 
focused on accurately measuring PM2.5 concentrations at different lo
cations. The commonly used methods include proximity to sources or 
monitors (Wu et al., 2011), dispersion models (Andersson et al., 2021; 
Park, 2020), remote sensing-based approaches (He et al., 2021; Song 
et al., 2019), and spatial interpolation methods (Liu et al., 2017; Ouyang 
et al., 2018). However, the static residence-based approach ignores the 
mobility dynamics of individuals. An individual engages in an average of 
three to four out-of-home activities each day (Yin et al., 2018), and the 
air quality levels vary substantially across different activity locations 
(Kwan et al., 2015). Therefore, the air pollution exposures that are 
calculated by this approach significantly deviate from the actual expo
sures in people’s daily lives. 

More recent studies have focused on mobility-based exposure as
sessments, which aim to consider human mobility. Global positioning 
system (GPS) devices or travel surveys have been utilized to obtain 
human mobility data (Ma et al., 2020; Song et al., 2021; Yoo et al., 
2015). In some research, the PM2.5 concentration data were collected by 
sparsely and unevenly distributed monitoring stations. For instance, Yoo 
et al. (2015) used GPS-equipped cellphones to track the locations and 
activities of 43 participants throughout the day and estimated the daily 
exposures of participants by using a dynamic time-activity-based 
approach. They found that the exposure results differed substantially 
from those obtained with a static residence-based approach when in
dividuals spent much time away from home. Song et al. (2021) evalu
ated the dynamic characteristics of the inhaled PM2.5 doses of 984 
residents over 24 h during workdays. In their research, the temporal and 
spatial characteristics of the inhaled PM2.5 doses were closely related to 
the rhythms of people’s daily activities. Since sparse and unevenly 
distributed monitoring stations can lead to inaccurate estimates of 
ambient PM2.5 concentrations, portable air pollution sensors have been 
increasingly used in geographic and epidemiological research (Bire
nboim et al., 2021; Ma et al., 2020; Piedrahita et al., 2014; Zhou and Lin, 
2019). For instance, Ma et al. (2020) recruited 117 residents and 
collected their GPS trajectories and real-time PM2.5 concentrations by 
using GPS tracking devices and smart air pollutant sensors. Portable air 
pollution sensors can obtain more accurate PM2.5 concentration data 
than static monitoring stations. Therefore, the variations in individual 
PM2.5 exposures at different activity locations (e.g., homes, workplaces, 
shops, and outdoor locations) and for different travel modes (e.g., 
walking, cycling, public transport, and private cars) can be investigated. 
Nevertheless, the number of samples in these studies is usually small, 
and acquiring travel surveys for large urban populations is costly and 
challenging. 

Location-based big data provide a practical means to assess the 
personal air pollution exposures of large populations (Dewulf et al., 
2016; Guo et al., 2020; Li et al., 2019; Nyhan et al., 2016, 2019; Yu et al., 
2018). On the one hand, the dynamic nature of location-based data can 
improve the biases in residence-based exposure estimations (Dewulf 
et al., 2016; Li et al., 2019; Yu et al., 2018). Dewulf et al. (2016) 
introduced cellphone data to air pollution exposure studies for the first 
time. The cellphone data and air pollution concentration data were 
combined to dynamically estimate the air pollution exposures. The 
mean exposures increased by 4.3% during the week and by 0.4% during 
the weekend when incorporating individual travel patterns. On the 
other hand, when compared with travel surveys, location-based big data 
have larger user scales and more widespread spatial coverage. For 
example, the dataset used in Nyhan et al. (2019) consisted of 607 million 
records that corresponded to approximately 1.2 million individual mo
bile phones in Eastern Massachusetts. Individual air pollution exposures 
could therefore be quantified by using mobile devices for populations of 
unprecedented size. 

The abovementioned research provides a glimpse into the rich 
literature that has examined personal air pollution exposures. Most of 
these studies have focused on assessing the exposures of individuals at 
static locations, such as homes or workplaces. However, very little 

knowledge is available on the dynamic exposures of people during 
travel. What are the major travel exposure patterns of urban pop
ulations? Although Xu et al. (2019) considered travel exposures in their 
study, the PM2.5 concentrations were obtained by sparse monitoring 
stations and could not accurately capture the space-time dynamics of air 
pollution on roads. 

To answer this question, we combine cellphone positioning data and 
PM2.5 concentration data collected from smart mobile sensors along 
roads to assess personal travel exposure to on-road PM2.5. First, we 
extract the trips of cellphone users from their trajectories and use the 
shortest path algorithm to calculate their travel routes on the road 
network. Second, the travel exposures for each user are estimated by 
associating their movement patterns with PM2.5 concentrations on 
roads. This research can enhance our understanding of the relationship 
between air pollution and the travel activities of urban populations. It 
can also provide targeted policies and valuable suggestions for the 
government and individuals to reduce the health risks caused by on-road 
PM2.5 pollution. 

The remainder of this paper is organized as follows. Section 2 in
troduces the study area and data used. Section 3 describes the meth
odology, including estimating the spatial concentrations of on-road 
PM2.5, trip identification and route simulations based on cellphone 
positioning data, and travel exposure estimations of cellphone users. The 
experimental results and analysis are presented in section 4. Section 5 
discusses the validity of the shortest path assumption we made for 
simulating cellphone users’ travel routes. The final section provides 
concluding remarks and future research directions. 

2. Study area and data 

2.1. Study area 

Guangzhou is located in the northern part of the Pearl River Delta, 
and it is one of the most developed and densely populated cities in 
China. The total car ownership in Guangzhou reached 2.39 million in 
2017 (Guangzhou Statistical Yearbook, 2018). The traffic-related 
pollution that is caused by road vehicle emissions is therefore non
negligible. Moreover, Guangzhou has a dry season from October to 
March due to its maritime subtropical monsoon climate. Atmospheric 
inversions that hinder the diffusion of atmospheric pollutants are 
frequent during this time. Therefore, the air quality is poor compared 
with other seasons. This study focuses on five central city areas within 
the Guangzhou Outer Ring Road, including Yuexiu District, Haizhu 
District, Liwan District, Tianhe District, and Baiyun District. They are 
core areas of Guangzhou with highly developed transportation networks 
and densely populated residences (Fig. 1). 

Fig. 1. Research area.  
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2.2. Dataset 

This study uses on-road PM2.5 concentration data, cellphone posi
tioning data, road network data, and housing price data collected in 
Guangzhou, China. The on-road PM2.5 concentration data were collected 
by 36 cycling volunteers on November 27, 2017, using mobile air 
pollution monitoring sensors (AirBeam from HabitatMap). 

Before collecting data, all mobile monitoring sensors were tested and 
calibrated with a national fixed monitoring station. The test place is on 
the top floor (7F) of the Guangzhou municipal monitoring building on a 
sunny day. We conducted 8 h of continuous data observation from 9:00 
to 17:00. All mobile monitoring sensors were placed in the same envi
ronment as the fixed monitoring station to eliminate the bias caused by 
different observation environments. Next, we calibrated the PM2.5 
concentration data collected by our mobile monitoring sensors with the 
data measured by the fixed monitoring station. First, we excluded the 
data of the first 5 min from the time the mobile sensors were turned on 
because these data can be unstable. Second, we averaged the data 
collected by each type of equipment at 5-min intervals and built a 
regression model for each mobile sensor to explore the relationship 
between the data collected by this mobile monitoring sensor and the 
data from the fixed monitoring station. The R2 values of all regression 
models ranged from 0.58 to 0.90, with an average R2 of 0.69. 

The detailed settings for PM2.5 concentration data collection are 
shown in Zhou and Lin (2019). The research area was divided into 
twelve sampling subzones, in which the volunteers cycled to obtain the 
on-road PM2.5 concentrations on the main roads in three periods: 
morning (7:00–12:00), afternoon (12:00–17:00) and evening 
(17:00–22:00). Each subzone was covered by three volunteers who took 
turns riding bicycles 2 to 3 times at speeds of 4–5 km/h. Finally, 428,000 
valid PM2.5 concentration records were obtained. We then corrected the 
data collected by each mobile monitoring sensor according to its cor
responding regression model. The spatial distributions of the on-road 
PM2.5 concentrations collected by the calibrated mobile monitoring 
sensors and the locations of ten national fixed monitoring stations are 
shown in Fig. 2. 

The PM2.5 concentrations of our mobile monitoring sensors and ten 
national fixed monitoring stations over time are illustrated in Fig. 3(a) 
and Fig. 3(b), respectively. The two curves have a similar trend, both 

increasing from morning until evening. Then, the Pearson correlation 
coefficients between them were calculated. As shown in Fig. 3(c), the 
adjusted R2 was 0.66 (p < 0.05), which indicates that the on-road PM2.5 
concentration data that were collected by mobile monitoring sensors 
have good reliability. It should be noted that the PM2.5 concentrations 
collected by the mobile monitoring sensors are higher than those 
collected by the fixed monitoring stations. This might be caused by the 
different observation characteristics between these two types of mea
surements. First, our mobile monitoring sensors were carried by the 
cycling volunteers, and they are mainly used to measure air pollution in 
a small area along the roads. In contrast, national fixed monitoring 
stations are usually set up in an open area, and the coverage area of each 
station is generally a radius of tens of kilometers (Ministry of Environ
mental Protection, 2013), and they are mainly used for regional air 
quality measurement. Second, the observation heights of the mobile 
monitoring sensors are less than 2 m above ground level, whereas the 
national fixed stations are usually located at heights of 3–15 m above the 
ground (Ministry of Environmental Protection, 2013). As mentioned in 
section 2.1, in the winter in Guangzhou, air pollutants can be easily 
suppressed near the ground because of atmospheric inversions, resulting 
in inconsistent PM2.5 concentrations in the air at different heights. The 
observation heights of the mobile monitoring sensors are the heights of 
the daily exposure environments of urban residents. Thus, the PM2.5 
concentrations that were collected by the mobile monitoring sensors are 
more consistent with the actual exposure environments of residents’ 
travel activities. 

The cellphone positioning data were acquired from a major cellular 
operator in Guangzhou. The positions of the cellphone users were 
recorded at hourly intervals. The dataset contained data from 5.09 
million phone users (approximately 36% of the total population) for one 
workday in December 2016. The number of records in the dataset is 
nearly 52.1 million, and each record contains information on the 
anonymous user ID, recording time, and longitude and latitude of the 
ambient cellphone towers communicating with the cellphones. Users 
whose trajectories were outside the study area were excluded. 
Furthermore, duplicate and abnormal records (e.g., adjacent records 
with speeds over 80 km/h and continuous missing data durations longer 
than 4 h) were deleted to ensure data quality. The locations derived from 
the cellphone positioning data could be recorded back and forth 

Fig. 2. The spatial distributions of on-road PM2.5 concentrations collected from mobile monitoring sensors during three periods.  
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between cellphone towers (a.k.a. ping-pong effect) and could even be 
lost when the signal strength of the cellphone towers around the users 
was weak. Then, the ping-pong effects in the cellphone positioning data 
were eliminated using the point-clustering method proposed by Xu et al. 
(2020). Finally, the nearest neighbor interpolation method (Hoteit et al., 
2014; Li et al., 2019, 2021) was utilized to fill in the missing locations of 
the cellphone user trajectories at hourly intervals. Then, a missing re
cord could be interpolated by the value of its nearest sampling position 
in time. 

The urban road network data were obtained from Baidu Map, which 
is the largest map service provider in China. The data include 34,586 
urban expressways, arterial roads, collector roads, and other road types. 

3. Methods 

3.1. Estimating the spatial concentration of on-road PM2.5 

To measure the PM2.5 concentrations on roads at a fine scale, we 
divided each road into 10-m segments and calculated the mean PM2.5 
concentration for each segment. Since the mobile monitoring data did 
not cover all road segments in the study area, the kriging interpolation 
method (Wong et al., 2004) was utilized to estimate the PM2.5 concen
trations on those road segments without sampling points. Kriging 
interpolation was conducted for each period (i.e., morning, afternoon, 
and evening). The parameters of kriging interpolation were optimized 
by using leave-one-out cross validation. The interpolation results were 
evaluated using the metrics of R2 and the mean absolute percentage 
error (MAPE). Fig. 4 shows the measured and predicted on-road PM2.5 
concentrations in three periods. The R2 values for the morning, after
noon, and evening periods are 0.79, 0.87, and 0.86, respectively. The 
MAPE values were stable at 0.08 in three periods. Overall, the interpo
lation results show good performance. 

After interpolation, we obtained the spatial distributions of the PM2.5 
concentrations for each period with a spatial resolution of 2 m × 2 m. 
Then, the PM2.5 concentrations on road segments without sampling 
points were represented by the average PM2.5 concentrations within a 
50 m radius. The interpolated PM2.5 concentrations on the road network 
of the study area are shown in Fig. 5. According to the air quality 
standards of the U.S. Environmental Protection Agency (U.S. EPA, 
2012), PM2.5 concentrations greater than 55.5 μg/m3 are considered 
“unhealthy” levels. As shown in Fig. 5, there are many roads with PM2.5 
concentrations above the “unhealthy” level in the afternoon and eve
ning, which indicates that the potential exposure risks of residents 
cannot be ignored. The on-road PM2.5 concentrations in the study area 
are high in the west and south and low in the east and north. The 
high-risk areas for PM2.5 pollution are mainly located in commercial 
centers, transportation facilities, and industrial zones, such as Shang
xiajiu Commercial Pedestrian Street, Guangzhou Railway Station, 
Fangcun Avenue, Longtan Interchange, and Kengkou Industrial Zone 
(Fig. 5). 

3.2. Trip identification and travel route simulation 

In this section, the trips of each cellphone user were identified and 
extracted from their trajectories. As shown in Fig. 6(a), we first detected 
the stay points of the user trajectories. If the distance between tempo
rally consecutive records was less than a certain radius (e.g., 500 m), we 
considered them to be a stay point. When the user location shifts from 
one stay point to another, the trajectory between these two stay points is 
regarded as a trip (e.g., Trip 1 and Trip 2 in Fig. 6(a)). The origin and 
destination of this trip are represented by two Thiessen polygons (T1 and 
T2 in Fig. 6(b)), which indicate the service range of the corresponding 
cellphone tower. Because the cellphone location data do not contain 
travel routes between stay points, this study estimates the probable 

Fig. 3. (a) PM2.5 concentrations of ten national fixed monitoring stations; (b) PM2.5 concentrations of mobile monitoring sensors; (c) Comparison of mobile 
monitoring sensors and fixed monitoring stations. 

Fig. 4. Measured and predicted on-road PM2.5 concentrations in three periods.  
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travel paths on the road network by using the shortest path algorithm 
(Dijkstra, 1959), which is a commonly used method to extract travel 
routes from cellphone data (Park, 2020). First, the starting and ending 
points for each trip (e.g., P1 and P2 in Fig. 6(b)) are simulated based on 
the Monte Carlo method (Strachan et al., 2007). The location points are 
randomly generated within the minimum bounding rectangle of the 
Thiessen polygon at each cellphone tower. The probability is set to 1 if 
the point is generated within the Thiessen polygon and otherwise is set 
to 0. After a series of random location point generation operations, the 
first point with a probability of 1 is set as the starting point or ending 
point. Second, the starting and ending points are associated with their 
closest roads, and the new starting and ending points are P1

’ and P2
’ 

(Fig. 6(b)), respectively. The user travel routes from P1
’ to P2

’ can be 
obtained by utilizing the shortest path algorithm. It is noted that trips 
are extracted only for individuals who move between stay points. Due to 
the insufficient spatial resolution of the cellphone location data, we 
cannot determine whether a user has moved if they are positioned at the 
same stay point for a continuous period. Therefore, trips within the 

range of stay points were not considered in this study. Finally, the 
number of users passing along each road is counted as the traffic flow on 
the road. 

3.3. Estimating travel exposures of cellphone users 

For each user a, the cumulative travel exposure to on-road PM2.5 for 
all n trips in a day can be calculated as follows: 

Cum TERa =
∑n

i=1
exposurei (1)  

where exposurei represents the travel exposure of user a on the ith trip. It 
is described as follows: 

exposurei =
∑m

j=1
CjTj (2)  

Fig. 5. On-road PM2.5 concentrations in the study area during the three time periods.  

Fig. 6. Example of trip identification and route simulation.  
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where m is the number of road segments that comprise the ith trip, Cj is 
the average PM2.5 concentration on road segment j, and Tj is the travel 
time of user a on road segment j. 

Then, the average travel exposure for user a on their n trips during a 
certain period can be calculated as follows: 

Ave TERa =
Cum TERa

Ta
(3)  

where Ta is the total travel time of user a for n trips. 

4. Results 

We will analyse the results from the following three aspects. The first 
aspect concerns the assessment of each user’s travel exposures. The 
second aspect is to explore the patterns and characteristics of interper
sonal variation in travel exposure. The third aspect is the analysis of the 
spatial heterogeneity of travel exposure at the road level across three 
periods. 

4.1. Patterns and characteristics of users’ travel exposures 

Based on the methods introduced in section 3, we extracted the trips 
for each user and calculated their average travel exposure to on-road 
PM2.5 (Ave_TER) during a day. Fig. 7(a) shows the distribution of the 
Ave_TER values for all users, which range from 5 ug/m3 to 90 ug/m3. For 
most users, the Ave_TER values are concentrated in the range of 20 ug/ 
m3 to 75 ug/m3. Moreover, the average Ave_TER value for all users is 
46.1 μg/m3, which is higher than the air quality guidance (24-h mean: 
25 μg/m3) suggested by the WHO (World Health Organization, 2006). 

Fig. 7(b) shows the Ave_TER distributions of all users during three 
periods (e.g., morning, afternoon, and evening). The mean Ave_TER 
values in each period are marked with dashed vertical lines. In the 
morning, the Ave_TER value is less than 60 μg/m3, and the mean value is 
34.0 μg/m3. In the afternoon, the variations in the Ave_TER values 
across users are larger, and the mean Ave_TER value is 49.2 ug/m3. In 
the evening, the Ave_TER value ranged from 20 ug/m3 to 80 ug/m3, with 
a mean value of 55.0 ug/m3. The Ave_TER value for all users in the 
morning is the lowest among the three periods, which is partly attrib
uted to the lowest on-road PM2.5 concentrations at that time. The 
Ave_TER ranges are similar in the afternoon and evening, whereas the 
mean Ave_TER of the latter is larger than that of the former. This is 
probably because the number of highly polluted roads is the highest in 
the evening, and people are more likely to be exposed to highly polluted 
road environments while travelling. 

4.2. Interpersonal variations in travel exposure 

Fig. 8(a) shows the variations in the cumulative travel exposures 

(Cum_TER) for each user in the morning, afternoon, and evening pe
riods. The maximum Cum_TER value occurs in the afternoon and ap
proaches 350 h μg/m3, which is 5 times the average Cum_TER for all 
users during the same period. To explore the travel exposure patterns of 
all users, we further used a clustering method to explore the main 
temporal patterns of the individual travel exposures. We used a three- 
dimensional vector S = [Cum TERmorning

a Cum TERafternoon
a , 

Cum TERevening
a ] to represent the travel exposure variations of user a in a 

day, where Cum TERmorning
a Cum TERafternoon

a , Cum TERevening
a are the 

accumulated travel exposures of user a during n trips in the morning, 
afternoon, and evening, respectively. Then, the k-means algorithm was 
utilized to classify the S vectors of all users. The Calinski Harabasz score 
was used to evaluate and determine the best k values. Higher Calinski 
Harabasz score values indicate a better clustering result. We tested 
different values of k and found that the highest value of the Calinski 
Harabasz score was obtained when k = 3. Therefore, the number of 
clusters is set to 3. After performing clustering, the percentages of users 

Fig. 7. Distribution of the Ave_TER values of all users.  

Fig. 8. (a) The variations in Cum_TER values for each user in the morning, 
afternoon, and evening periods and (b) the temporal travel exposure patterns of 
three types of cellphone users. 

Q. Li et al.                                                                                                                                                                                                                                        



Health and Place 75 (2022) 102803

7

in Clusters 1, 2, and 3 are 54.0%, 25.5%, and 20.5%, respectively. 
The curves representing the temporal travel exposure patterns of 

cellphone users who experience varying levels of exposure over the 
three defined periods are shown in Fig. 8(b). The thick solid line is the 
center of each cluster. The upper and lower borders of the coloured 
surface area are the mean values plus and minus the standard deviations, 
respectively. As shown in Fig. 8(b), the travel exposure patterns vary 
among users. For the users in Cluster 1, the Cum_TER in each period is 
the lowest compared with Clusters 2 and 3. Meanwhile, the standard 
deviations are the lowest, which indicates that the differences in the 
Cum_TER values among the users of Cluster 1 are less significant than 
those of Clusters 2 and 3. For the users in Clusters 2 and 3, the Cum_TER 
values in the three periods increase in the afternoon. The differences 
between Clusters 2 and 3 occur because the Cum_TER values of Cluster 2 
rise further in the evening, whereas the Cum_TER values for Cluster 3 
recover quickly after the afternoon period. This indicates that the high- 
risk time for Cluster 2 occurs in the evening, whereas the high-risk time 
for Cluster 3 occurs in the afternoon. Specifically, from the afternoon to 
evening, the Cum_TER values for Cluster 2 continue to increase from 50 
h•ug/m3 to 120 h•ug/m3, but the Cum_TER values for Cluster 3 recover 
from 150 h•ug/m3 to 50 h•ug/m3. 

We further examine the possible reasons why these three clusters of 
users have distinct travel exposure patterns from the perspective of their 
travel patterns. Fig. 9 shows the densities of the daily travel activities for 
each cluster. The users in Cluster 1 mainly travelled within the Tianhe 

district, where the on-road PM2.5 concentrations were relatively low in 
all three periods. The users in Cluster 2 mainly travelled in the Yuexiu 
district, where the on-road PM2.5 concentrations were very high in the 
evening. The users in Cluster 3 mainly travelled in the Yuexiu district 
and over a portion of the highly populated roads within Haizhu district. 
The travel activity intensity for Cluster 3 is particularly high in the 
middle of the day. These results suggest that the travel exposure patterns 
of residents are closely related to their daily travel habits. Through our 
study, the high-risk periods and high-risk roads for different populations 
are precisely pinpointed. 

4.3. Spatial heterogeneity of travel exposure at the road level 

The spatial heterogeneity of the PM2.5 concentrations on roads re
sults in differences in their impacts on urban populations. Higher PM2.5 
concentrations and more travelers on a road indicate a higher risk. 
Fig. 10 displays the relationship between the PM2.5 concentrations and 
traffic flows on the roads. For each period, the on-road PM2.5 concen
trations and traffic flows of all roads were ranked separately in 
descending order. Then, all roads are grouped by their rankings of the 
PM2.5 concentrations and traffic flows. As shown in Fig. 10, the red 
symbols represent the roads with the highest 25% PM2.5 concentrations 
and traffic flows, which are called H–H type roads. The orange symbols 
represent the roads with the highest 25% of PM2.5 concentrations and 
lowest 75% of traffic flows, which are H-L type roads. The mustard 

Fig. 9. Daily travel patterns of three clusters of users.  
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symbols represent the roads with the lowest 75% of PM2.5 concentra
tions and highest 25% of traffic flow, which are called L-H type roads. 
The roads depicted in green have the lowest 75% PM2.5 concentrations 
and traffic flows and are called L-L type roads. 

The spatial distributions of the four road types are shown in Fig. 11. 
The locations of the four types of roads are not stable over time, which is 
related to the distributions of the on-road PM2.5 concentrations and 
travel activity intensities at different times of the day. Since the H–H 
road type affects a large number of travelers, we thus use this as an 
example to analyse its characteristics. In the morning, the H–H type 
roads are mainly concentrated in three areas, such as Huan Shi Middle 
Road, Liede Avenue and the roads around Zhujiang New Town, and 
Industrial Avenue. In the afternoon, the H–H type roads are mainly 
located in the left part of the study area, such as Fangcun Avenue, Inner 
Ring Road, and Zhongshan 8th Road. In the evening, the H–H type roads 
are more dispersed in space. In addition to the roads highlighted in the 
morning, Xinjiao Middle Road also becomes an H–H type road in the 
evening. The H-L type roads have lower traffic volumes despite having 
very high PM2.5 concentrations and thus affect fewer travelers. There
fore, the government should focus more on H–H type roads and decrease 

the risk of PM2.5 exposure of people on H–H type roads by using travel 
route guidance and environmental improvements. The vulnerable pop
ulations can modify their travel plans or try to avoid going outdoors 
during the peak concentration hours and travelling on highly polluted 
roads. 

5. Discussion 

In our study, the travel routes of cellphone users were simulated by 
using the shortest path algorithm under the assumption that people 
choose the shortest paths to travel in most cases. Since the actual travel 
routes are not available in the cellphone positioning data, there is a lack 
of “ground truth” data to validate our results. To evaluate whether the 
users’ travel exposures can be seriously biased under the shortest path 
assumption, we designed more experiments to quantify the differences 
in users’ travel exposure to on-road PM2.5 by comparing the shortest- 
path (SP) strategy with two other route choice strategies. They are 
defined as follows: 

Random-path (RP) strategy: users randomly choose one path from 
the k shortest paths. 

Fig. 10. Types of roads grouped by PM2.5 concentrations and traffic flows.  

Fig. 11. Spatial distributions of the four road types.  
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Longest-path (LP) strategy: users choose the longest path from the k 
shortest paths. 

The SP strategy is viewed as the base strategy. For the RP and LP 
strategies, we used the k shortest path algorithm (Eppstein, 1998) to 
obtain the top k shortest paths for each origin-destination pair. If k is 
sufficiently large, the k shortest paths can theoretically include all the 
travel route options of users. To lower the computational time, we have 
to choose a reasonable k value first. The Fréchet distance (Alt and 
Godau, 1995; Devogele et al., 2017), a measure of similarity between 
curves that takes into account the location and ordering of the points 
along the curves, was used to measure the similarity of the kth shortest 
path and the shortest path. As shown in Fig. 12, the Fréchet distance 
ascends slowly as k increases from 2 to 100. When k is greater than 20, 
the Fréchet distance varies slightly, which means that the similarity of 
the kth shortest path and the shortest path will no longer change 
dramatically. The optimal k value is set to 20 by considering the 
computational time and the stability of the results. 

Then, we randomly selected 5000 cellphone users and evaluated the 
travel exposure difference between the RP strategy and SP strategy as k 
increases from 2 to 20. The percentage difference in the cumulative 
travel exposure (Diff_Exposure) of user a between RP and SP strategy 
was calculated as follows: 

Diff Exposurea(i)=
Cum TERa(i) − Cum TERa(1)

Cum TERa(1)
× 100%, 1 ≤ i ≤ k (4)  

where Cum TERa(i) is the cumulative travel exposure of user a when he/ 
she chooses the ith shortest path from the k shortest paths. 

Fig. 13(a) shows the distribution of Diff_Exposure of all users at 
different k values. It is found that the median Diff_Exposure always re
mains at 0 when k increases from 2 to 20. By investigating the rela
tionship of Diff_Exposure with k, we find that a larger k value tends to 
generate greater travel exposure differences. The 1.5 interquartile range 
(1.5IQR) reaches the maximum when k is 20, and the maximum and 
minimum Diff_Exposure between the RP strategy and SP strategy are 2.0 
and − 2.0%, respectively. This means that the over- or under-estimation 
of users’ travel exposures is within a small range, even though users’ 
travel routes do not necessarily follow the shortest paths. 

In three periods, the distributions of Diff_Exposure between LP and 
SP and between RP and SP strategy, are further assessed to examine the 
upper and lower bounds of Diff_Exposure across different times of the 
day. Fig. 13(b) shows that the median of Diff_Exposure between LP and 
SP strategy is approximately 0 over three periods. The 1.5IQR reaches 
the maximum in the evening, and the lower and upper bounds of Dif
f_Exposure are − 2.5% and 2.5%, respectively. Similarly, the range 
within 1.5IQR of Diff_Exposure between RP and SP strategy also reaches 
the maximum in the evening, and the lower and upper bounds are 
− 1.5% and 1.5%, respectively. By comparing these two distributions of 
Diff_Exposure, we find that the maximum difference in users’ travel 
exposures occurs in the evening for both the SP and LP strategies, 
whereas the LP strategy generates greater exposure estimation 

differences. 
In section 4, all users were classified into three clusters with distinct 

travel exposure patterns. Therefore, we compared the distribution of 
Diff_Exposure among the three clusters of users to quantify the travel 
exposure differences of each type of users if they choose travel paths 
using the RP or LP strategy (Fig. 14). For the three clusters of users, the 
distribution of Diff_Exposure among them had a similar trend: the LP 
strategy generates greater exposure estimation differences than the RP 
strategy, and the IQR and 1.5IQR of Diff_Exposure between LP and SP 
strategy are larger than those between RP and SP strategy in all three 
periods. For users in cluster 1, the 1.5IQR of Diff_Exposure between LP 
and SP rises from morning to evening, and the lower and upper bounds 
of Diff_Exposure are − 2.5% and 2.5%, respectively. For the users of 
cluster 2, the 1.5IQR of Diff_Exposure between LP and SP in the after
noon is less than that in the other two periods. The largest 1.5IQR ap
pears in the evening, with lower and upper bounds of − 2.5% and 2.5%, 
respectively. For users in cluster 3, the largest 1.5IQR of Diff_Exposure 
between LP and SP is in the morning, with lower and upper bounds of 
− 2.0% and 2.0%, respectively. 

Overall, the travel exposure differences between LP and SP and be
tween RP and SP strategy vary across users and periods. The maximum 
travel exposure difference is no more than 2.5%, even if all users choose 
the LP strategy for travelling. Therefore, we can conclude that the biases 
introduced by the shortest path assumption are kept to a reasonable 
level. Even though users do not exactly follow the shortest paths, the 
estimation of travel exposure does not vary that much. 

6. Conclusions 

PM2.5 pollution has imposed substantial health risks on urban resi
dents. Previous studies mainly focused on assessing peoples’ exposure at 
static locations, such as homes or workplaces. However, there has been a 
scarcity of research that quantifies the dynamic PM2.5 exposures of 
people when they travel in cities. In this study, we used cellphone 
positioning data and PM2.5 concentration data that were collected by 
using smart sensors along roads in Guangzhou, China, to assess the 
travel exposures of individuals to on-road PM2.5. First, we extracted the 
trips of the cellphone users from their trajectories and estimated their 
travel routes on the road network by using the shortest path algorithm. 
Then, we estimated the travel exposure of each user by associating their 
movement patterns with PM2.5 concentrations on roads. In our study, 
the PM2.5 concentration data on roads were collected by using mobile 
sensors. Compared with air pollution data obtained using fixed moni
toring stations and remote sensing monitoring methods, the data ob
tained from roads can more accurately reflect the air quality in the daily 
travel environments of urban residents. Moreover, unlike the studies 
that are based on limited travel survey samples, this study was able to 
assess the overall travel exposure of a large urban population. 

The results show that travel exposure cannot be ignored when 
providing a more comprehensive assessment of the air pollution expo
sure of urban residents. For most cellphone users in Guangzhou, China, 
the average travel exposure per hour falls within the range of 20 ug/m3 

to 75 ug/m3. The most severe travel exposures occur in the evening, with 
a mean value of 55.0 ug/m3. There are three types of users who expe
rience varying levels of exposure over the three defined periods. The 
users in Cluster 1 (54.0%) experience low travel exposures throughout 
the day. The high-risk time for users in Cluster 2 (25.5%) occurred in the 
evening, whereas the high-risk time for users in Cluster 3 occurred in the 
afternoon (20.5%). Furthermore, it is found that the impacts of on-road 
PM2.5 on urban populations are uneven across roads, and more attention 
should be given to roads with high PM2.5 concentrations and traffic 
flows in each period, such as Huan Shi Middle Road in the morning, 
Inner Ring Road in the afternoon, and Xinjiao Middle Road in the eve
ning. The findings in this study can contribute to a more in-depth un
derstanding of the relationship between air pollution and travel 
activities of the urban population. Additionally, it can provide targeted Fig. 12. Distributions of Fréchet distance of all users with different values of k.  
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policies and valuable suggestions for the government and individuals to 
reduce the health risk caused by on-road PM2.5 pollution. 

There are a few limitations of this study. First, despite the potential of 
cellphone data to assess air pollution exposures in large populations, the 
spatial and temporal resolutions of the cellphone data used in this study 
are relatively low compared with those of GPS data. Thus, some short 
trips within the service range of each cellphone tower might be filtered 
out. Second, since actual travel routes are not available in the cellphone 
data, they were estimated by using shortest path algorithms. However, 
in reality, users’ travel routes do not necessarily follow the shortest 
paths (Park, 2020), which might overestimate or underestimate users’ 
travel exposure. According to our evaluation, the median values of 
travel exposure differences are almost 0% in all three periods. The 
maximum travel exposure differences are no more than 2.5%, which 
means even if each user chooses the longest path for travelling, the 
estimation of travel exposure does not vary that much. Third, the actual 
utilizations of different travel modes (e.g., car, bus, bicycle, or walking) 
were not considered because the user travel modes were not recorded in 
the cellphone data. These modes cannot be accurately inferred due to 
the limitations of cellphone data (Huang et al., 2019a,b). Therefore, the 
exposure assessment results can be affected to a certain extent. Fourth, 
because of labor costs, the use of cyclists to collect on-road PM2.5 data 
has difficulties in capturing the day-to-day variability and seasonal 
variability of urban air pollution. However, it is still an attempt to obtain 
large-scale and high-resolution PM2.5 data. In the future, we will try to 
collect on-road PM2.5 concentration data covering more days to make it 
more representative. Nevertheless, this research contributes to personal 
travel exposure assessment from a dynamic perspective by combining 
field-collected on-road PM2.5 concentration data and individuals’ travel 

routes extracted from large-scale cellphone data. 
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