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Abstract
The growing availability of big geo-data, such as mobile 
phone data and location-based social media (LBSM), 
provides new opportunities and challenges for modeling 
human activity spaces in the big data era. These datasets 
often cover a large sample size and can be used to model 
activity spaces more efficiently than traditional travel 
surveys. However, these data also have inherent limitations, 
such as the lack of reliable demographic information of indi-
viduals and a low sampling rate. This paper first reviews the 
strengths and weaknesses of various internal and external 
activity space indicators. We then discuss the pros and 
cons of using various new data sources (e.g., georeferenced 
mobile phone data and LBSM data) for activity space mode-
ling. We believe this review paper is a valuable reference 
not only for researchers who are interested in activity space 
modeling based on big geo-data, but also for planners and 
policy makers who are looking to incorporate new data 
sources into their future workflow.
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1 | INTRODUCTION

In geography and transportation studies, modeling activity spaces is a crucial topic when studying the character-
istics of individual behaviors and collective urban mobilities (Golledge & Stimson, 1997; Jones et al., 1990; Silm & 
Ahas, 2014; Yuan & Raubal, 2016). For example, by understanding urban residents' activity space patterns, urban 
planners can evaluate residents' accessibility to critical resources, such as healthcare facilities, public transportation, 
and leisure facilities, based on the availability of resources within an individual's activity space (Raskind et al., 2020; 
Sherman et al., 2005a, 2005b). Previous studies defined activity space as the local areas within which people 
travel during their daily activities (Mazey, 1981). Related concepts include, but are not limited to, space-time prisms 
(Hägerstrand, 1970), the awareness space (Brown & Moore, 1970), and the action space (Horton & Reynolds, 1971). A 
large branch of activity space studies have focused on approximating the external morphology (e.g., size and shape) 
and the internal structure (e.g., the regularity of visitation patterns) of activity spaces (Schönfelder & Axhausen, 2002; 
Sherman et al., 2005b).

With the development of mobile positioning technologies (e.g., smart phones and built-in GPS devices), there is 
a growing body of research applying data generated by these new technologies to quantitively model the morphol-
ogy and structure of activity spaces, as well as investigate how activity spaces form in different urban environments. 
Example datasets include, but are not limited to, cell phone call detailed records (CDRs) (Ahas, 2005; Ahas et al., 2015), 
mobile signaling data (MSD) (Xu, Shaw, Zhao, et al., 2016), location-based social media (LBSM) check-in data (Yuan & 
Wang, 2018), and smart card transaction data (Zhang et al., 2021). Compared to traditional surveys and travel diaries, 
these datasets provide a valuable resource for understanding human activity spaces on a large spatio-temporal scale, 
but there are also data quality and uncertainty issues associated with big geo-data (Wesolowski et al., 2013; Yuan 
et al., 2018). It is crucial to understand the impact of these issues when applying such data to human activity space 
studies.

The following sections of this paper are organized as follows. Section 2 introduces commonly used activity space 
metrics and indicators. Section 3 discusses how various types of big geo-data, with a focus on mobile phone data 
and LBSM data, have been used for activity space modeling. Section 4 concludes this paper and summarizes the 
contributions.

2 | ACTIVITY SPACE INDICATORS

2.1 | External indicators

Over the years, numerous internal and external indicators have been introduced to characterize the geometric prop-
erties of an individual's daily activities. Here we define external indicators as the metrics measuring the external 
morphology, such as the size, shape, and orientation, of human activity space. We define internal indicators as those 
that analyze the structure and formation of activities, such as the randomness and regularity of activity spaces.

A widely used metric in activity space research is the standard deviational ellipse (SDE). This is because an ellipse 
can effectively capture the size, shape, and orientation of activity spaces simultaneously. Taking a collection of point 
events as input, the SDE seeks to define an ellipse, of which its major and minor axes tend to capture the directions 
along which the points have the maximum and minimum spatial dispersion (Figure 1). The center of the SDE is 
determined by computing the geometric center (i.e., mean center) of the points. The lengths of the major and minor 
axes of the SDE are determined by measuring the standard deviation of the points' coordinates along these two axes 
(Yuill, 1971). The eccentricity e demonstrates the elongation of the SDE. In the context of activity space research, 
the locations extracted from an individual's activities, as well as the frequencies of visiting these locations, are used 
together to determine the SDE. Thus, the SDE can not only reflect the spatial extent of a person's activities, but 
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also the directional distribution of these activities (Gesler & Meade, 1988; Schönfelder & Axhausen, 2003; Sherman 
et al., 2005b; Zenk et al., 2011).

A closely related indicator is the standard distance (SD) (Figure 1). Given a collection of points, this indicator is 
computed as the standard deviation of the distance of the points from the mean center (i.e., the centroid of all points) 
(Bachi, 1963). Compared to SDE, which provides an elliptical view of human activity space, the standard distance can 
be considered a circular view of the spatial dispersion of one's activities (Buliung & Kanaroglou, 2006; Schönfelder & 
Axhausen, 2002). The standard distance is also closely related to the radius of gyration (ROG), a metric widely used 
in physics and complexity science. ROG has an equivalent form of standard distance when it is used to measure 
the spread of geographic locations and the spatial dispersion of individual travel behavior (Gonzalez et al., 2008; 
Xu et al., 2018). As mentioned in Schönfelder and Axhausen (2003), the mean center of an individual's activities is 
considered the central location of an activity space when SDE or the standard distance is applied.

In addition to the above measures, the minimum convex polygon, or convex hull (Figure 1), has also been applied 
to quantify an individual's activity range (Buliung & Kanaroglou, 2006; Thériault et al., 1999). This metric captures 
the minimum spatial area that can cover the entire set of locations where individuals practice their activities. Convex 
hulls are very simple to compute but are highly sensitive to outliers: one point far from the mean center can possibly 
cause a substantial change in this indicator.

2.2 | Internal indicators

As discussed in Golledge and Stimson (1997), there are three determinants of activity spaces: (1) home location; (2) 
regularly visited activity locations (Points of interest, POIs), such as the work location, shopping malls, etc.; and (3) 
travel between and around regularly visited locations (e.g., accessibility of public transportation near one's home). In 
traditional activity studies, locations where people regularly spend time are often used to analyze their socioeconomic 
status and lifestyle (Pendyala et al., 1991; Xu, Shaw, Fang, & Yin, 2016; Yamamoto & Kitamura, 1999). Unlike in travel 
surveys where home/work/POI locations are often explicitly asked, in studies that rely on big geo-data, researchers 
mostly need to estimate POI locations based on algorithms and rulesets, which inevitably introduces uncertainty 
into the analysis. For example, Phithakkitnukoon et al. (2010) identified stops (i.e., locations where one stayed longer 
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F I G U R E  1   Graphical illustration of the standard deviational ellipse (SDE), radius of gyration (ROG), standard 
distance (SD), and Convex Hull
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than a time threshold) from mobile phone user trajectories and then defined home location as the most visited stop 
at night and work location as the most frequent stop between Monday–Friday, 8 AM–5 PM. Another study by Ahas 
et al. (2010) presented a process to identify various types of meaningful locations, such as home anchor points and 
work anchor points, using passive mobile phone data. Their methodology provided a valuable framework for identi-
fying regularly visited locations, such as popular tourist destinations, in various applications.

It is worth noting that home locations are usually considered a “middle product” for extracting other internal indi-
cators because it is often necessary to convert a point location to quantifiable metrics. For example, Hu et al. (2020) 
calculated the average distance between the home location and other visited locations to investigate the activity 
space structure of mobile phone users. In addition, home locations and other POIs can be used to improve the exter-
nal indicators in Section 2.1 because these locations are considered focal points of human activities. Previous studies 
have modified the above measures by substituting the mean center or focal points of activity space by an individual's 
important activity locations (Dijst, 1999; Newsome et al., 1998; Xu et al., 2015).

In addition to extracting POIs, researchers also developed a series of probability-based indicators calculated 
based on the likelihood of users visiting different locations (Song et al., 2010; Wang & Yuan, 2021). One commonly 
used metric in this category is entropy (Equation (1)), which measures the probabilistic distribution of visiting different 
locations:

E =−

N

∑
i=1

p
i
log

2
(pi) (1)

where pi refers to the probability of a given user checking in at the same place i, and N stands for the total number of 
places where this user checked in. A higher entropy indicates a more randomly distributed visitation pattern; thus, it 
is more difficult to predict the future locations of a user with a higher entropy value. For example, the point pattern 
on the left in Figure 2 has a lower entropy value (i.e., a less dispersed pattern) than the one on the right.

Besides entropy, travel diversity is also a helpful indicator that measures the probabilistic likelihood of trips 
among different activity locations (Pappalardo et al., 2016; Xu, Xue, et al., 2021). Compared to entropy, travel diver-
sity focuses more on the magnitude of interactions between location pairs (Equation (2)):

D =− ∑
k∈C

p
k
log

2
(pk) (2)

YUAN ANd XU4 of 15

F I G U R E  2   Example point patterns
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where pk is the probability of a trip happening between the kth origin-destination (OD) pair. C is a collection of OD 
pairs.

Another group of indicators adopts a network-based perspective to examine the connectivity and accessibil-
ity of activity spaces. Examples include road network buffer (Sherman et al., 2005b) and minimum spanning tree 
(Schönfelder & Axhausen, 2003). By assuming that individuals tend to travel along the shortest paths, these measures 
derive a collection of road networks that connect an individual's activity locations with the minimum travel cost. 
These measures are closely related to time-geographic measures such as potential path space and daily potential 
path area (Kwan, 1998, 1999).

3 | NEW DATA SOURCES FOR ACTIVITY SPACE MODELING

3.1 | Georeferenced mobile phone data and their applications

Although there remains a gap across countries, mobile phones have become a ubiquitous technology for everyday 
life (International Telecommunication Union, 2021). Studies have employed different types of mobile phone data in 
activity space research. The most widely used are call detail records (CDRs). Whenever a cellphone user engages in 
certain types of cellular activities (e.g., phone calls, text messaging), the time of the event and the location of the 
mobile phone device are recorded (Blondel et al., 2015; Xu et al., 2015). The location of the device is usually reported 
at the level of cellphone towers or base stations. Therefore, the spacing gap between cellphone towers—an indicator 
of the positional accuracy of CDRs—can vary in different areas of a city, ranging from a few hundred meters to several 
kilometers (Jiang et al., 2017). Mobile signaling data (MSD) is another type of mobile phone data used in existing 
studies (Xu, Li, et al., 2021; Yan et al., 2019). While CDRs produce sparse records for inactive users, MSD can capture 
user footprints in a more continuous manner through different types of signaling events, such as cellular handover, 
phone calls, text messaging, data connection (e.g., web browsing), and other status changes, which are triggered by 
telecommunication systems (Janecek et al., 2015). In other words, MSD has an improved temporal resolution over 
CDRs (Xu et al., 2020), especially for less active cellphone users. As with CDRs, locations in MSD are often reported 
at the level of cellphone towers. Some studies have introduced other types of mobile phone data, such as Erlang data 
(Ratti et al., 2006) and sightings data (Chen et al., 2014).

There have been numerous studies applying georeferenced mobile phone data to understand human activity 
spaces. We categorize them into three groups: (1) identifying the similarity and distinctions of activity space indica-
tors among population groups; (2) understanding the spatial heterogeneity of human activity space and its connec-
tions to socioeconomic characteristics; and (3) analyzing the relation between activity spaces and social ties.

First, many studies have used georeferenced mobile phone data to calculate the activity space indicators discussed 
in Section 2, such as identifying important activity locations of individuals (Ahas et al., 2010; Isaacman et al., 2011), 
quantifying the range of activity spaces (Ahas et al., 2007; Kang et al., 2010; Phithakkitnukoon et al., 2012), and 
understanding how individuals allocate time across different activity locations (Bayir et al., 2009). Some of the studies 
specifically focused on understanding the regularity of individual human activities. By analyzing CDR data of large 
populations, Gonzalez et al. (2008) and Song et al. (2010) employed radius of gyration and entropy-based measures 
to quantify the statistical properties of individual mobility patterns. The studies found that individual human mobility 
exhibited a remarkable level of spatio-temporal regularity. However, some studies have also uncovered a notable 
level of diversity in people's use of space (Yuan et al., 2012). For example, by analyzing a CDR dataset collected in 
Estonia, Silm and Ahas (2014) found that ethnicity has a significant influence on the activity space of individuals. In 
particular, the Russian-speaking minority tended to have more confined activity spaces than the Estonian-speaking 
majority. The study showed that mobile phone data could be used to understand the activity space of different socio-
demographic groups and their implications for social segregation and inequality.
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Second, the link between people's use of space and their socioeconomic environment has led to a series of stud-
ies to analyze their connection. For example, by analyzing a CDR dataset collected in Shenzhen, China, Xu et al. (2015) 
introduced a modified standard distance measure to quantify the spatial dispersion of individuals' activities using 
home location as the reference point. The study found a north-south divide of people's activity range in Shenzhen 
that aligns with the socioeconomic divide of the city. Blumenstock et al. (2015) stated that behavior  indicators 
derived from mobile phone data can be used to accurately portray the poverty and wealth level of individuals. Similar 
efforts were also found in several other studies (Frias-Martinez et al., 2013; Pappalardo et al., 2016), which reported 
varying levels of prediction accuracy and efficacy of mobility indicators. As these studies relied on machine learning 
models, the relationship between activity space and people's socioeconomic characteristics was not revealed explic-
itly. By using two CDR datasets collected in Singapore and Boston, Xu et al. (2018) derived a collection of individual 
activity space and mobility metrics (e.g., radius of gyration, activity entropy, travel diversity) and correlated them with 
the socioeconomic characteristics of individuals inferred from income and housing price data. The study found that in 
both cities, phone users across different socioeconomic classes exhibited a similar level of mobility diversity.

Third, as mobile phone data such as CDRs are able to capture the cellphone communications among people, the 
data can be used to portray activity spaces and social interactions simultaneously. Using a CDR dataset collected in 
Portugal, Calabrese et al. (2011) found that more than 70% of users who called each other frequently had also shared 
urban space at the same time. Unlike studies that examine activity space for independent individuals, this research 
analyzed whether the activity spaces of social contacts tended to overlap with each other. Several other studies have 
also employed mobile phone data to understand how people share activity spaces with others (Shi et al., 2016; Wang 
et al., 2015; Xu et al., 2017). These studies suggest that shared activity spaces and social ties are tightly connected, 
and mobile phone data have provided new opportunities for understanding this connection (Toole et al., 2015). Since 
mobile phone data can portray the actual and potential interactions of people in their activity spaces, the data have 
also been used to understand the exposure of social groups to each other and to study social segregations (Jarv 
et al., 2015; Leo et al., 2016; Silm & Ahas, 2014; Xu et al., 2019) (Figure 3).

3.2 | Pros and cons of using mobile phone data for modeling human activity spaces

Compared to travel surveys and questionnaires, mobile phone data offer a scalable solution for documenting the 
dynamics of large populations for long periods of time. The information on the when and where of individual activ-
ities are readily available, and thus can be used directly to model activity space without further digitization and 
geocoding. Therefore, mobile phone data have great potential to support large-scale spatial applications, such as 
transportation and urban planning (Chen et al., 2014), tourism analysis (Xu, Xue, et al., 2021), assessment of pollution 
exposure (Nyhan et al., 2016), and monitoring of human dynamics during public health crises such as COVID-19 
(Huang et al., 2022). Location data can also be collected through various smart phone applications, and this data have 
become valuable sources for human mobility analysis because they can provide more precise location information 
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F I G U R E  3   Use of mobile phone data to quantify social segregation across urban locations in Singapore. The 
graphic was reproduced from Figure 5(c) in Xu et al. (2019) with the permission of the authors/journal
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than travel surveys can and more background detail about the participants than CDR data can (Ren et al., 2022; 
Xu, 2021).

There are also many challenges when mobile phone data are used to model activity space. First, mobile phone 
data are usually reported at the level of cellphone towers. Given the positional inaccuracy and other uncertainty 
issues (e.g., oscillation of cellphone signal, also known as the ping-pong effect), the location observations in the data 
do not always reflect the actual locations of individuals (Xu et al., 2020). Second, some of the location recordings in 
the data might not reflect individuals' meaningful activity locations (e.g., a pass-by location when a person initiates 
a call on a subway). Moreover, mobile phone data usually fall short of collecting sociodemographic characteristics 
of individuals, and the types of activities and trip purposes are not reported in the data. This lack of demographic 
information poses a considerable challenge to activity space research when activity semantics and the background of 
travelers are critical pieces of information. Data fusion techniques (e.g., combining CDR with census data) and novel 
approaches for deriving activity semantics are possible solutions to address this limitation.

3.3 | LBSM and other datasets for modeling human activity spaces

LBSM is defined as “Social Network Sites (SNS) that include location information” (Roick & Heuser, 2013). In the 
big data era, LBSM data are widely used for modeling human activity patterns and the perceptions of places (Sui 
& Goodchild, 2011; Wu et al., 2014). LBSM data usually cause fewer privacy concerns than georeferenced mobile 
phone data and can be obtained through application program interfaces (APIs). LBSM users can also publish more 
detailed background information such as their age, gender, education, and employment on their public profile 
(Fohringer et al., 2015; Mancosu & Bobba, 2019; Yuan et al., 2018). The geolocations in LBSM can either be coordi-
nates acquired from built-in smart phone GPS modules if the user enabled accurate positioning or approximated POIs 
with a bounding box (e.g., “The City of Austin” or “Yellowstone National Park”) (Yuan et al., 2020).

Numerous studies have used social media data to model human activities. Although these studies may not be 
directly about activity space modeling, they are valuable for understanding how LBSM can help researchers better 
study the spatial patterns of human activities. Popular research topics on using LBSM to model spatial activities 
include, but are not limited to (1) analyzing the clustering and dispersion of human activities; (2) analyzing place 
semantics and sentiments; and (3) analyzing the interactions on social media and in the geographic space.

First, studies have used location data from social media platforms as a proxy for mobility patterns (Fu et al., 2018; 
Hawelka et al., 2014; Ilieva & McPhearson, 2018). The results were valuable for understanding urban-level, 
country-level, and international travel dynamics in the big data era. For instance, Ilieva and McPhearson (2018) 
reviewed how LBSM data could be used to answer crucial questions in maintaining a sustainable urban system, such 
as “which parks and green spaces are most popular (Sonter et al., 2016)” and “which metropolitan areas are most 
likely to suffer from depression (Yang et al., 2015)?”

Second, researchers have analyzed the sentiments and semantics of LBSM user activities and then used the 
extracted information to enrich the characteristics of geographic places (Doran et al., 2016; Estevez-Ortiz et al., 2016; 
Mitchell et al., 2013; Sui & Goodchild, 2011). As mentioned in Agnew (2005, p. 84), ‘… space can be considered as 
“top-down,” defined by powerful actors imposing their control and stories on others. Place can be considered as 
“bottom-up,” representing the outlooks and actions of more typical folks.’ Mitchell et al. (2013) conducted a senti-
ment analysis based on 80 million words generated from a Twitter dataset and mapped the spatial distribution of 
happiness in the United States. They found the happiest five states, in order, were: Hawaii, Maine, Nevada, Utah, and 
Vermont, although the differences among all states were not substantial.

Third, researchers in network science have thoroughly studied the structure and evolution of social networks 
formed on social media sites (Boyd & Ellison, 2007). In contrast, GIScientists focus more on how spatial information 
plays a factor in the interactions between LBSM users (Jia et al., 2019; Liu et al., 2014). For example, Illenberger 
et al. (2011) found that the probability of accepting a person as a contact is inversely proportional to the distance 
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between the two users; however, spatial proximity did not seem to impact the topology of social networks. Liu 
et al. (2014) used a gravity model to explore the distance decay effect in trips extracted from LBSM check-in data.

When explicitly modeling activity spaces, previous research has primarily used LBSM data to understand the 
differences in activity space indicators among population groups (i.e., similar to the studies based on mobile phone 
data in Section 3.1) (Hawelka et al., 2014; Li et al., 2013). For instance, Lee et al. (2016) used Twitter data to investi-
gate the differences between activity spaces on weekdays and weekends in Santa Barbara, California. They extracted 
the convex hulls of Twitter user activity spaces and identified five unique patterns with different shapes and anchor 
points. Other researchers went one step further and applied LBSM data to studying spatial inequity, social justice, 
and segregation (Liu et al., 2014; Shelton et al., 2015). A recent work by Wang et al. (2018) found that although 
residents of primarily Black and Hispanic neighborhoods had similar activity space sizes as residents in advantaged 
neighborhoods, they were much less likely to visit middle-class neighborhoods, which demonstrated the existence of 
relative isolation and segregation.

However, compared to georeferenced mobile phone data, LBSM data are not as widely used for activity space 
modeling due to various reasons. First, the data sampling resolution is much lower than CDRs, let alone MSD (i.e., 
most people do not post as often on social media as they text or call). Therefore, it requires a longer data collection 
duration and larger datasets to produce a comprehensive picture of a given user's activity space (Yuan & Wang, 2018). 
Wang and Yuan (2021) tested the sensitivity of activity space indicators with different sample sizes. Their results 
showed that although most external and internal indicators approached a stable value with 12 months of data, some 
indicators could be very unstable and easily distorted, such as the estimated home locations. The spatial sampling 
rate was often biased too. Figure 4 shows the unbalanced distribution of Twitter check-in data in Austin, TX (Yuan 
et al., 2020). As can be seen, certain districts, such as the city center, have a higher density of check-ins than other 
areas.

Second, the sampling rate and demographic bias of LBSM data is concerning to many researchers (Golub & 
Jackson, 2010; Longley & Adnan, 2016; Longley et al., 2015; Yuan et al., 2020). For example, Pinterest is espe-
cially popular among women between the ages of 25 and 34 with average household incomes of $100,000. It is 
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F I G U R E  4   Spatial sampling biases of Twitter data in Austin, TX. PLBSM is the number of tweets divided by 
population and then normalized to the range [0,5]. A darker color (i.e., a higher PLBSM value) indicates that users 
are more likely to tweet their locations in that district
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challenging, sometimes impossible, to accurately assess these demographic biases because most SNS do not validate 
the profile information provided by users (Yuan et al., 2020).

Third, data authenticity and availability is also a common problem. Fake accounts and bots are inevitable on social 
networking sites (Dickerson et al., 2014; Gurajala et al., 2015). Because the APIs to access SNS data are provided by 
the data vendors (i.e., private companies), users have little control over how the samples are generated from a black 
box or what information is available for research (Gonzalez-Bailon et al., 2014). For example, in June 2019, Twitter 
announced that it would stop providing the precise geotagging feature (Hu, 2018).

Besides georeferenced mobile phone data and social media data, a few other datasets have been used for activity 
space modeling. However, they are not as popular as CDRs/MSD or LBSM data for various reasons. One example 
is studies that recruit participants to wear GPS tracking devices to log their activities (Palmer et al., 2013; Raanan & 
Shoval, 2014). These studies have similar limitations as traditional travel diaries in that the sample sizes are rather 
limited, so it is difficult to scale up the analysis. However, the advantage of studies with actively recruited participants 
is that researchers can obtain more comprehensive and reliable demographic information. Another example is studies 
that use smart card data to study activity space differences in cities (Gong et al., 2017; Zhang et al., 2021). These 
datasets are collected through automated transit fare collection systems and can be used to represent the activity 
patterns of public transit users. For example, Zhang et al. (2021) approximated smart card users' activity spaces as 
SDEs and found that the spatial extents of elderly and disabled people's activity spaces are smaller than the general 
population. However, smart card data are limited because they are only available in cities with an advanced public 
transportation system and obtaining the data requires a close collaboration between researchers and the public 
sector.

3.4 | Comparing big geo-data in modeling human activity spaces

To sum up, Table 1 provides a simplied summary of the pros and cons of popular datasets for activity space modeing, 
which can serve as a useful reference for researchers in this field.

Although datasets have their similarities and differences, it is worth noting that most of these big geo-data face 
one common challenge - how private information can be used ethically and responsibly (Calabrese et al., 2015; Zhang 
et al., 2016). Countries and regions may have different regulations on how user data, especially telecommunication 
data, can be collected and used. For example, the European Union published the General Data Protection Regulation 

YUAN ANd XU 9 of 15

Data type Pros Cons

Travel diaries •  Can include detailed information of 
participants

•  Can target interested population groups

•  Costly and time-consuming to collect
•  Often cover limited number of participants 

and geographic regions
•  Accuracy relies on participants’ input

CDR data •  Easily scalable
•  Data consistently being collected

•  Access to the data requires close 
partnership with the industry

•  Low spatial resolution and precision in areas 
with fewer cell towers

•  Inconsistent sampling rate in CDR data

LBSM data •  Easily scalable
•  Easly accessible through APIs

•  Potential demographic biases
•  Low sampling rate
•  Data authenticity issues (e.g., fake accounts)

Smart card data •  Collected automatically through automated 
transit fare systems

•  Access to the data requires partnership 
with governmental agencies

•  Only reflects patterns of public transit use

T A B L E  1   Comparison of datasets
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(GDPR) in 2016, which aims to provide a clear guideline regarding the protection of personal data and privacy issues 
incurred during data collection, processing, storage, and sharing (European Union, 2016). Data ethics also go beyond 
what the law regulates. Zook et al. (2017) discussed the best practices of big data research. They highlighted that 
privacy is not a public/private binary value, so just because something is publicly available and can be legally used, 
it does not mean that the subsequent use is inherently unproblematic. This is especially important for LBSM studies 
as users may accidently leave their social media profile public, but it may still be considered inappropriate to look 
through someone's entire online history (Zook et al., 2017).

4 | CONCLUSIONS

The growing availability of big geo-data provides enormous opportunities for modeling human activity spaces, which 
has been a classic question in travel behavior analysis for years. In this paper, we first review the commonly used 
indicators and metrics for human activity space modeling, as well as the strengths and weaknesses of each indicator. 
Due to the rapid development of ICTs, many new data sources are widely used to study human activities. This paper 
discusses the progress and challenges of using these new datasets for activity space modeling. In particular, we focus 
on georeferenced mobile phone data and LBSM data due to their pervasiveness in activity space modeling. We 
also touch upon studies using other datasets, such as smart card data. The findings can be summarized as follows. 
First, although big geo-data have various data quality issues (e.g., low spatio-temporal resolutions), they still provide 
valuation data sources that are easier to obtain and cover a larger geographic area than traditional travel surveys. 
Second, certain activity space indicators (e.g., estimated home locations) may be more sensitive to sparse datasets 
than other indicators, so researchers should adjust their data collection strategies based on practical needs. Third, the 
applications of big geo-data in activity space modeling are not limited to calculating measurements and indicators; 
instead, researchers have also tried to correlate these measurements with the built environment and social ties to 
help understand broader research questions, such as social segregation.

A promising future research direction is data fusion techniques that combine big geo-data and traditional data 
sources. For example, researchers can use travel surveys to validate a subset of the patterns obtained from big 
geo-data, and then derive a strategy to calibrate the rest of the results. This review paper provides a valuable refer-
ence for researchers who are interested in exploring activity space studies using various types of new big geo-data, 
as well as understanding their strengths and limitations. It also provides a reference for urban planners and policy 
makers when applying new data sources to plan for a smarter and more efficient urban system in the age of instant 
access.
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