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A B S T R A C T   

The abilities to predict tourist movements are critical to many urban applications, such as travel recommen
dations, targeted advertising, and infrastructure planning. Despite its importance, our understanding on the 
movement predictability of urban tourists and visitors is still limited, partially due to difficulties in accessing 
large scale mobility observations. In this study, we aim to bridge this gap by analyzing a nationwide mobile 
phone dataset. The dataset captures movement traces of a large number of international travelers who visited 
South Korea in 2018. By introducing two prediction models, one being Markov chain and the other with a 
recurrent neural network architecture, we assess how well travelers’ movements can be predicted under different 
model settings, and examine how predictability relates to travelers’ length of stay and activeness in travel 
patterns. Since travelers’ destination choices are quite diverse in South Korea, this enables us to further inves
tigate the geographic variation of the models’ performance. Results show that the Markov chain model achieves 
an overall accuracy between 33.4% (@Acc1 metric) and 64.2% (@Acc5 metric), compared to 41.9% (@Acc1) 
and 67.7% (@Acc5) for the recurrent neural network model. The prediction capabilities of both models are 
largely unequal across individuals, with active travelers being more predictable in general. There is a notable 
geographic variation in the models’ performance, meaning that travelers’ movements are more predictable in 
some cities, but less in others. We believe this study represents a new effort in portraying the movement pre
dictability of urban tourists and visitors. The analytical framework can be applied to assist tourism planning and 
service deployment in cities.   

1. Introduction 

Understanding the predictability of human mobility is an important 
research topic in urban studies. The abilities to predict human move
ments are critical to many applications, such as travel recommenda
tions, targeted advertising, and transportation planning. In the past two 
decades, our understanding of human mobility has been greatly 
enhanced, largely due to the increasing availability of human movement 
datasets. These novel mobility observations, such as GPS tracking (Li 
et al., 2008; Solomon, Livne, Katz, Shapira, & Rokach, 2021), geolocated 
social media (Cho, Myers, & Leskovec, 2011; Hawelka et al., 2014), and 
mobile phone data (Gonzalez, Hidalgo, & Barabási, 2008; Jiang, Fer
reira, & González, 2017; Song, Qu, Blumm, & Barabási, 2010; Xu, Belyi, 
Bojic, & Ratti, 2018), have unveiled many factors that shape the 

predictability and regularity of human movements. Despite these fruit
ful research outcomes, most of the findings are drawn upon urban res
idents. The mobility dynamics of other population groups, such as urban 
tourists and visitors, remain underexplored. 

How tourists or visitors (broadly conceived as travelers in this paper) 
move around in a city or tourism destination can be understood through 
different means, such as surveys, GPS tracking technologies, and geo- 
tagged social media. Due to cost of recruiting participants and other 
challenges, many studies can only study a small traveler population, 
such as a few hundred people, through the usage of travel surveys (Lau & 
McKercher, 2006; Xiao-Ting & Bi-Hu, 2012) or GPS tracking (Orellana, 
Bregt, Ligtenberg, & Wachowicz, 2012; Pettersson & Zillinger, 2011). 
This makes it difficult to generalize findings to the large populations. 
Social media data, such as geotagged photos (Lu, Wang, Yang, Pang, & 
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Zhang, 2010) and check-ins (Zhang & Zhou, 2018), could capture 
movements of large numbers of travelers. However, user observations 
can be sparse as location recordings are passively generated when 
travelers posted photos or checked in at a place. In other words, 
movement trajectories are often incomplete, therefore cannot portray a 
comprehensive picture of travel behavior. 

The ways travelers move around differ notably from residents. Pre
vious studies have suggested that residents exhibit a notable level of 
movement predictability, largely due to the regularity in their travel 
patterns (Gonzalez et al., 2008). Many studies are able to track residents 
over a prolonged period of time (e.g., a few months or years). Some of 
them would apply entropy-based measures to quantify mobility regu
larity as a way to reflect movement predictability (Goulet-Langlois, 
Koutsopoulos, Zhao, & Zhao, 2017; Song et al., 2010). However, trav
elers (e.g., tourists) usually stay at a destination for a few days, or a 
couple weeks at most (McKercher, Shoval, Ng, & Birenboim, 2012; 
Raun, Ahas, & Tiru, 2016; Xu, Li, Belyi, & Park, 2021). This makes 
entropy-based measures inadequate as their observations are temporary. 
Therefore, a common approach is to apply prediction models and assess 
their abilities to predict travelers’ movements. However, such studies 
are still scarce, and knowledge has been obtained in few cities (Sun, 
Huang, Peng, Chen, & Liu, 2019; Xia, Zeephongsekul, & Packer, 2011) 
or confined geographic areas such as parks (Zheng, Huang, & Li, 2017). 
There is a limited understanding of movement predictability across 
cities and over large tourist populations. 

The predictability of travelers’ movements is also context dependent. 
For instance, Markov chain models have been widely used for next- 
location prediction (Gambs, Killijian, & del Prado Cortez, 2012; Xia, 
Zeephongsekul, & Arrowsmith, 2009). These models are based on 
movement transition probabilities among locations, thus favor collec
tive behavioral choices. In this regard, travelers with “mainstream” 
movement patterns are likely to be more predictable given the usage of 
Markov chain. Yet, there may exist long-term dependencies in travelers’ 
movements. For example, travelers with recurrent visits to some loca
tions are more predictable in some sense. In other words, the predict
ability of travelers’ movements is jointly shaped by individual and 
collective behavioral dynamics. Prediction models with different set
tings may yield different interpretations (e.g., Markov chain models vs. 
recurrent neural network models). 

The abilities to predict travelers’ movements are also affected by 
their length of stay (Rodriguez, Martinez-Roget, & Gonzalez-Murias, 
2018), how frequently they move (Xu, Xue, Park, & Yue, 2021), usage 
of transportation services (Le-Klaehn & Hall, 2015), and other factors 
such as the presence of travel parties (Zhao, Lu, Liu, Lin, & An, 2018). It 
is meaningful to investigate how movement predictability varies with 
travelers’ behavioral characteristics. Moreover, given possible varia
tions of the above factors across space, it is possible that the abilities to 
predict travelers’ movements would vary among cities. These aspects 
are understudied in existing research, partially due to difficulties in 
accessing large-scale mobility observations over these populations. 

Recent years have witnessed an increasing usage of mobile phone 
data in understanding tourist travel behavior (Park, Xu, Jiang, Chen, & 
Huang, 2020; Raun et al., 2016; Saluveer et al., 2020; Xu, Li, Xue, Park, 
& Li, 2021; Zhao et al., 2018). These datasets are able to capture 
movement patterns of large populations at relatively fine 
spatio-temporal resolutions. Thus, to fill the above research gaps, this 
study analyzes a nationwide mobile phone dataset which captures the 
movement traces of 192,302 international travelers who visited South 
Korea in 2018. The dataset empowers us to seek a deeper understanding 
of travelers’ movements and their predictability over a highly repre
sentative population. We first introduce a spatial clustering method to 
identify areas in South Korea that are of interest to these international 
travelers. By focusing on travelers whose activities mainly fall within 
these areas, we introduce two prediction models, one being Markov 
chain and the other with a recurrent neural network architecture, to 
assess how well their movements can be predicted. Through model 

comparisons, we demonstrate how different model settings would yield 
varying levels of prediction performance as well as inter-personal vari
ations. Following that, we evaluate how travelers’ length of stay and 
activeness in travel patterns impact the models’ prediction accuracy. 
Since travelers’ destination choices are quite diverse in South Korea and 
many of them would visit multiple cities during their journeys, this 
empowers us to examine the predictability of travelers’ movements 
when they were moving within a city (intra-city) or heading towards 
another (cross-city). Finally, by focusing on intra-city movements, we 
investigate how the models’ prediction capabilities vary geographically. 
We believe this study is a pioneering effort in portraying the movement 
predictability of tourists and visitors within and across cities. We argue 
that structures of input data, configuration of prediction models, and 
geographic contexts of tourism destinations have a joint impact on how 
we interpret and predict travelers’ movements. The research findings 
can be leveraged to inform tourism planning and service deployment in 
cities (e.g., location-based recommendations). 

2. Study area and dataset 

This study1 uses a large scale mobile phone dataset collected in South 
Korea. The anonymized dataset tracks the location footprints of 192,302 
international travelers who visited the country between August 1st and 
15th, 2018. The dataset was acquired from a major cellular operator in 
South Korea as part of a tourism big data project with the Korea Tourism 
Organization. 

Call Detail Records (CDRs) and Mobile Signaling Data (MSD) are two 
typical types of phone data used in mobility research (Gonzalez et al., 
2008; Xu et al., 2015, 2020). These datasets document phone users’ 
whereabouts as a sequence of locations captured at discrete time points. 
CDRs are passively generated during phone usage activities (e.g., phone 
call & text message), while MSD tracks user locations in a more 
continuous manner through different types of signaling events triggered 
by the telecommunication system (e.g., cellular handover, periodic 
location update). The dataset used in study is regarded as a special type 
of MSD, in which phone records are preprocessed by the data provider to 
generate estimates of dwell time at cell tower level. Table 1 shows an 
example of an individual’s mobile phone trajectory. Each record tracks 
the unique ID of the user, date of observation, the cell tower location 
(lon/lat) where the user’s mobile phone was observed, as well as the 
start and end time that define the stay period. There are a total number 
of 3.69 million records in this dataset. 

To better understand the spatial granularity of the dataset, for each 
cell tower, we measure its distance to the nearest peer. By measuring this 
distance for all cell towers, we obtain a distribution with the 25th 
percentile, median, and 75th percentile being 139.7, 264.6 and 632.2 
meters, respectively. In general, the dataset has an adequate spatio- 
temporal resolution to support the location prediction analysis. 

For these 192,302 international travelers, their duration of stay in 
South Korea could vary substantially. Some of them could even be 

Table 1 
Example of an individual’s mobile phone records in the dataset.  

User id Date Start time End time Longitude Latitude 

123*** 2018-08-01 12:11:00 13:43:00 126.*** 37.*** 
123*** 2018-08-01 13:51:00 14:31:00 127.*** 37.*** 
123*** 2018-08-01 14:44:00 15:12:00 127.*** 37.*** 
... ... ... ... ... ... 
123*** 2018-08-03 15:34:00 15:50:00 129.*** 35.*** 
123*** 2018-08-03 16:39:00 23:50:00 129.*** 37.***  

1 See a data visualization of this study: https://youtu.be/zkH6Xu2_8MA 
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transfer passengers who temporarily stayed in the country. To tackle this 
issue, we have filtered users who appeared in the dataset for less than 12 
hours. This gives us 129,332 users as the base for the prediction task. 

3. Methodology 

3.1. Generate individual location sequence from mobile phone data 

The initial step for the prediction task is to define the scale at which 
the analysis is performed. Although phone users’ records were docu
mented at the cell tower level, it is not appropriate to perform the pre
diction task using this spatial unit, primarily for two reasons. First, the 
positional accuracy of mobile phone data is affected by the densities of 
cell towers in space as well as issues of cellphone load balancing and 
signal strength variation (Isaacman et al., 2012). Therefore, cell towers 
might not reflect the exact locations of mobile phone users. Second, in 
areas where cell towers are densely distributed, each cell tower usually 
covers a small service area, therefore cannot represent activity locations 
that are meaningful to travelers (e.g., tourism attractions). Note that 
some studies used regular grid as the spatial unit for location prediction 
(Calabrese, Di Lorenzo, & Ratti, 2010; Yao, Zhang, Huang, & Bi, 2017). 
Adopting this approach will also introduce uncertainties. Since each cell 
tower covers a service area, which is sometimes approximated using 
Voronoi tesselation (Blondel, Decuyper, & Krings, 2015), mapping these 
coverage areas to grid cells is challenging because a Vorionoi polygon 
could overlap with multiple grid cells, and vice versa. Tackling this issue 
would require more complicated methods such as probabilistic 
approaches. 

To tackle the above issues, we first introduce a spatial clustering 
method to group cell towers in close proximity into clusters. The cell 
tower clusters are then used as the spatial unit for the prediction task. 
Note that a traveler’s mobile phone trajectory at the cell tower level can 
be represented as T = {(l1,ts

1,te
1),(l2,ts2,te2),…,(lN,tsN,teN)}, where li denotes 

the cell tower location of the ith record, and tsi and tei denote the start and 
end time of the stay. The spatial clustering works as follows. By iterating 
trajectories of all travelers, we compute the total number of times each 
cell tower was visited and sort them in descending order. We locate the 
cell tower with the highest visitation frequency and group nearby towers 
within a roaming distance of Δd. Among cell towers that are not 
grouped, the one with the highest visitation frequency is then selected 
and grouped with towers within Δd. The clustering process terminates 
until all cell towers are processed. 

In this study, we set Δd as 2km. There are two considerations for 
choosing this value. First, 2km is notably higher than the average 
spacing gap between cell towers in the study area. It would ensure that 
phone users’ movements observed at this scale are not contaminated by 
particular uncertainty issues, such as “fake movements” between towers 

that are caused by cellphone load balancing. Second, 2km is also a radius 
that can characterize many locations meaningful to travelers (e.g., a 
park, a hotel resort, a shopping mall). One might argue that 2km is too 
coarse to capture certain points of interest (POI) such as a restaurant or 
an antique store. Considering the limited positional accuracy of mobile 
phone data, this study does not examine travelers’ mobility predict
ability at a finer spatial resolution. 

As a result, the clustering method yields a total number of 6969 
spatial clusters. By iterating all phone users’ trajectories, we calculate 
the total number of times each cluster was visited as an indicator of its 
popularity. We find that the top 1151 cluster areas account for 95% of 
the total visits, meaning that the remaining clusters only attracted a tiny 
fraction of visits (Fig. 1A). Therefore, this study only focuses on the top 
1151 cluster areas in the prediction task. The lowest visitation frequency 
of these clusters is 70. For each phone user’s raw cellphone trajectory T, 
we further convert it into a location sequence observed at the level of the 
spatial clusters Tc = {l′1, l′2, …, l′M}, where l′n denotes the cluster area 
visited by the user at time step n, and M denotes the total length of the 
sequence. For simplicity, we refer to these location sequences as user 
trajectories in the remaining of the paper. 

A location in Tc is labeled as “Others” if it falls within a cluster out of 
the top 1151. According to this definition, we find that 87% of the 
travelers only visited the top 1151 clusters during their stays in South 
Korea. Intuitively, these travelers are samples appropriate for the pre
diction tasks. Note that other travelers had part of their trips between 
highly and less visited clusters (“Others”). In this research, we further 
incorporate travelers who have at least 70% of their observations in the 
top 1151 clusters into our analysis (Fig. 1B). In total, 95% of the trav
elers will be used as samples for the prediction tasks. We did not 
incorporate the remaining 5% of travelers who have a large proportion 
of activities in less visited clusters (“Others”). Although they represent a 
unique aspect of travelers’ mobility behavior, the sample size in this 
research is not representative enough to depict their movement pre
dictability. A dataset with a longer time span may help gather enough 
samples about these travelers, whose movement predictability is a topic 
worth investigation. Note that we also don’t consider user trajectories 
with a total length smaller than three (M < 3), which are too short to 
support the prediction task. Filtering such travelers gives us a total 
number of 97,685 user trajectories. 

3.2. Sampling strategy for the prediction task 

By measuring users’ length of stay from the 97,685 trajectories, we 
find that the majority of travelers visited South Korea for only a few days 
(Fig. 2A). The median, mean and 95th percentile of length of stay are 
3.0, 3.7 and 9.4 days, respectively. This means if the training samples (i. 
e., users) are selected randomly for the prediction task, users who stayed 

(A) (B)

Fig. 1. (A) Cumulative percentage of visitation frequency of spatial clusters. (B) Distribution of percentage of “Others” locations traversed by user trajectories.  
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in the country for a relatively long time will be severely under- 
represented. Therefore, we introduce a strategy by uniformly sampling 
users based on their duration of stay (Fig. 2B). This sampling strategy 
allows us to capture users with varying lengths of stay. It ensures that 
users who stayed in South Korea for only a few days do not dominate in 
the samples. 

In order to yield robust results for the prediction analysis, we 
generate ten sets of samples. Each set of samples includes 28,000 user 
trajectories. In particular, by using length of stay as the selection crite
rion, we randomly select 2000 users from each sub-population at an 
interval of 0.5 days. Note that users who stayed over 7 days are 
considered as one single sub-population. This gives us 2000 × 14 = 28, 
000 samples. The prediction models will be performed and systemati
cally compared using the ten sets of samples. Fig. 2C shows the distri
butions of trajectory length (i.e., number of cluster areas traversed by a 
user trajectory) before and after performing the data sampling. The 
median, mean and 95th percentile in original data (97,685 trajectories) 
are 8.0, 11.1 and 28, respectively. These numbers change to 10.0, 12.3 
and 30 after trajectory sampling is performed. 

3.3. Markov chain model 

The first prediction model we use in this study is Markov chain. 
Given a set of possible states, a Markov chain models the transitions 
among states by assuming that the probability of transitioning to a 
future state is solely dependent on the current state. In the context of 
location prediction, the state space captures all possible locations a 
traveler could visit. To predict a traveler’s movement, the model as
sumes that the probability of moving to a particular location at a future 
time step n + 1 depends only on the traveler’s current location: 

Pr(Xn+1= ln+1 |X1= l1,X2=l2,…,Xn=ln)=Pr(Xn+1= ln+1 |Xn= ln) (1) 

More precisely, the model used here is a first-order, discrete-time 
Markov chain. To build the model, asshown in Fig. 3, we establish a 
transition matrix that documents the probability of travelers moving 
from Ci to Cj: 

pij = qij

/
∑

j
qij (2)  

Here qij denotes the total number of transitions from Ci to Cj captured 
from the user trajectories. Note that: 
∑

j
pij = 1 (3) 

The transition matrix will then be used for the prediction task. The 

performance of the model will be evaluated based on ten sets of samples 
generated in the previous step (Section 3.2). For each set of samples, 5- 
fold cross validation is adopted to evaluate the prediction accuracy. 

Evaluating the Markov chain model would offer many practical and 
behavioral insights. First, due to simplicity of the model assumptions, 
the training data of Markov chain can be simple in its data structure. For 
instance, a simple matrix on the origin-destination (OD) trips is suffi
cient to build a prediction model. Thus, if the Markov chain model 
achieves a desirable performance, it would indicate that aggregate data 
on travelers’ movements could be useful in some operational settings 
when individual data is not accessible. Second, the performance of the 
Markov chain model would reveal the collective dynamics of travelers’ 
movements. The model is expected to perform well when travelers have 
uniform or converging movement patterns. However, when travelers 
have a remarkable diversity in their location choice and trip planning, 
the model may provide inaccurate predictions. 

3.4. Recurrent neural network model 

The Markov chain model leverages collective mobility patterns to 
make the prediction. However, the model does not take into account the 
long-term dependency of individual movements. Here, we introduce 
another prediction model with a Recurrent Neural Network (RNN) ar
chitecture. The model takes an individual’s location sequence as input, 
and outputs the likelihood of the next location visited by the traveler. 

As shown in Fig. 4, the model consists of four building blocks, 
namely, a one-hot encoding layer, an embedding layer, a fully connected 
layer, and a softmax layer. The one-hot encoding layer is used to map 
each location (i.e., cluster area) to a one-hot feature vector. The size of 
the vector equals the total number of possible locations (R = 1151). 
Since these feature vectors are sparse, a usual practice is to further 
incorporate an embedding layer, which transforms these sparse features 
into low-dimensional, dense vectors. To model the temporal dependency 
of individual movements, we connect the embedding layer with a Long 
Short-term memory (LSTM) layer, an RNN architecture widely used over 
sequence data (Hochreiter & Schmidhuber, 1997). The LSTM layer takes 
the embedding of an individual’s location sequence as input, and out
puts a feature vector ht+1 for the downstream task.2 The LSTM layer is 
connected with a fully connected layer, and then a softmax layer which 
outputs the probability that each location (Ci) tends to be visited by the 
given individual in the next time step t + 1. 

(A) (B) (C)

Fig. 2. (A) Length of stay of users generated from the 97,685 user trajectories. (B) Sampling strategy based on length of stay. (C) Length of user trajectories before 
and after performing the sampling (using one set of samples as an example). 

2 Readers can refer to the appendix for a detailed description of the archi
tecture of LSTM. 
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p(loc = Ci|ht+1) =
ezi

∑R
k=1ezk

(4)  

Here zi denotes the ith element of z, which is the output feature vector of 
the fully connected layer (size = 1151). There are two key parameters in 
the model, namely, the size of the embedding layer and the hidden 
vector size of the LSTM layer. The size of the embedding layer affects the 
expression of locations, namely, the mapping of one-hot location vectors 
to dense but lower-dimensional feature vectors. The hidden vector size 
controls the complexity of the LSTM layer and affects the layer’s ability 
to model temporal dependencies in travelers’ movements. The two pa
rameters jointly shape the model’s prediction capability. By testing 
various combinations of the two parameters, we adopt 400 (embedding) 
and 80 (LSTM) that yield the best overall performance. For simplicity, 
we refer to the proposed recurrent neural network model as LSTM model 
in the remaining of this article. 

Comparing the LSTM model with Markov chain has notable impli
cations. It would reveal whether or to what extent the long-term de
pendency of individual movement could help better predict travelers’ 
whereabouts. Note that when making predictions, the LSTM model re
quires a fixed length of individual location sequence as the model input. 
In other words, we have to decide the number of prior locations to be 
used to predict an individual’s next location. We name this parameter as 
L. When performing the 5-fold cross validation over ten sets of samples, 

we test a series of values for L and evaluate their impacts on the pre
diction accuracy. 

3.5. Evaluation metrics 

At the prediction stage, both the Markov chain and the LSTM model 
output a list of locations sorted by the probability of being visited by a 
traveler. A common metric for the model performance is Acc@K, which 
measures whether an individual’s next location can be captured by the 
top K predicted locations. In this study, we evaluate travelers’ mobility 
predictability from a few perspectives. First, we evaluate the two 
models’ overall accuracy by computing the percentage of successful 
predictions under a specific K (e.g., Acc@1, Acc@3, Acc@5). 

We also evaluate the prediction accuracy for each individual traveler 
by measuring the proportion of successful predictions. For instance, 
given a traveler with trajectory length M = 11, the Markov chain model 
can be used to predict the traveler’s next location for ten times (from 
time step t = 2 to t = 11). If the top one prediction (Acc@1) successfully 
captures the traveler’s next move for five times, the accuracy would be 
5/10 = 0.5. A large value indicates that the traveler’s movements are 
highly predictable under a specific model setting. 

pR1            pR2                                pRR

p21            p22                                p2R

p11            p12                                p1R

...

user1

user2

userk

userk-1

...

...

...

... ...... ...

...

C5             C21            C5             C2

C241           C2            C241                  

C12          C100           C27          C100          C30

C21          C180           C5            C175           C5             C69

C1               C2                                   CR

C1 

C2 

CR 

Fig. 3. Build transition probability matrix from travelers’ movement trajectories.  

Fig. 4. LSTM model with a location embedding layer.  

Y. Xu et al.                                                                                                                                                                                                                                       



Computers, Environment and Urban Systems 92 (2022) 101753

6

4. Analysis results 

4.1. Movement predictability and inter-personal variations 

In this section, we evaluate travelers’ movement predictability by 
comparing the overall performance of the two models. Since the LSTM 
model requires L as the length of input sequence, we first evaluate how 
the parameter choice impacts prediction accuracy. Fig. 5A shows the 
mean value of Acc@1 metric of ten trials under different L values, with 
error bars representing the one standard deviations. Each trial is based 
on one set of user trajectories generated in the sampling stage. The result 
suggests that larger values of L generally yield better prediction per
formance. However, the improvement becomes relatively small when L 
is larger than 6. Therefore, in the remaining of the paper, we adopt L = 6 
as the parameter choice (named as LSTM6 model). Note that we also 
train LSTM2, LSTM3, LSTM4 and LSTM5 models to support our analysis 
when the input sequence is not long enough. For instance, when pre
dicting an individual’s location at t = 4, since only three locations were 
visited by the traveler prior to the next move, we will use the trained 
LSTM3 model to make the prediction. 

Fig. 5B shows the overall performance of the two models. In general, 
the LSTM model achieves better prediction accuracy than the Markov 
chain, but their difference becomes smaller as K increases. When K 
equals 1, the Markov chain model could accurately predict a traveler’s 
next location for 33.4% of the times, compared to 41.9% for LSTM. The 
error bars show small variations of prediction accuracy over ten trials, 
which indicates the robustness of our findings. The Acc@3 metrics are 
54.0% for Markov chain, and 59.7% for LSTM. When using the top 5 
predictions (Acc@5), the two models could capture a traveler’s next 
move for 64.2% (Markov) and 67.7% (LSTM) of the times, respectively. 
The results suggest that although travelers’ movements are perceived to 
be less routine than some other population groups such as residents, they 
still exhibit a notable level of predictability. 

However, both models reveal a large inter-personal variation. Fig. 5C 
shows the distribution of prediction accuracy of individuals at different 
K values. For instance, the movements of many travelers cannot be well 
predicted by the Markov chain under K = 1 (e.g., accuracy close to 0%). 
This is because the Markov chain model is based on the transition 
probabilities among locations. Travelers whose movement patterns 
deviate significantly from the majority are likely to be less predictable. 
Interestingly, the inter-personal variation becomes smaller for LSTM, no 
matter which K is chosen. This means the LSTM model could narrow the 
difference between travelers (in prediction accuracy) by capturing the 
long-term dependencies in their movements. When K = 3, the two 
models achieve a prediction accuracy over 50% (Markov chain) and 
60% (LSTM) respectively for at least half of the travelers. The median 
prediction accuracy increases to 67% (Markov chain) and 69% (LSTM) 

when K = 5. The results in Fig. 5B and C suggest that the two models 
achieve a good overall performance especially when K is large. How
ever, the models’ prediction capabilities are largely unequal across in
dividual travelers. 

4.2. Impact of length of stay 

In this section, we further examine the associations between trav
elers’ movement predictability and length of stay in South Korea. Ac
cording to the results of Markov chain model, as shown in Fig. 6A–C, 
travelers’ movement predictability tends to peak when length of stay is 
between two and four days. When length of stay exceeds four days, 
movement predictability tends to decrease as travelers stayed longer. It 
is important to mention that in the sampling stage, travelers are uni
formly sampled based on length of stay (Fig. 2B). In other words, the 
variations in movement predictability are not affected by sampling bias, 
but the actual mobility patterns. Since Markov chain makes predictions 
based on transition probabilities, it is possible that travelers with a long 
duration of stay had distinctive movement patterns compared to the 
majority of others. Therefore, the Markov chain model achieves a lower 
prediction accuracy for these travelers. 

However, when applying the LSTM model, the prediction accuracy 
over these “long-term” visitors (e.g., length of stay >4 days) is notably 
improved (Fig. 6D–F). In particular, movement predictability remains 
relatively stable across travelers with varying lengths of stay. It suggests 
that the LSTM model is able to capture the long-term dependency of 
individual mobility, which helps better predict the movements of certain 
travelers. For instance, some long-term visitors could repeatedly visit 
their favorite places over and over again. Although these places might 
not be of interests to other travelers, the LSTM model will be able to 
learn from these recurrent movement patterns to make better 
predictions. 

The results in Fig. 6 suggest that the better performance of LSTM 
(over Markov chain) is largely attributed to the model’s improved ability 
in predicting movements of long-term visitors. It also explains why 
LSTM model yields a smaller inter-personal variation in prediction ac
curacy (Fig. 5C). 

4.3. Impact of trajectory length 

We next examine the relationship between trajectory length (M) and 
movement predictability. Intuitively, trajectory length denotes the total 
number of locations traversed by a traveler during the whole journey. A 
larger M, especially when length of stay is controlled, indicates more 
active travel patterns. Therefore, it would be interesting to investigate 
how this activeness relates to movement predictability. As shown in 
Fig. 7, for both models, travelers’ movement predictability generally 

(A) (B) (C)

Fig. 5. (A) Acc@1 metric of LSTM model under varying input sequence lengths. (B) Overall model performance: Markov vs. LSTM. (C) Individual variations of 
movement predictability. 
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increases with M. However, after controlling for length of stay (Fig. B.2 
in Appendix), such relationship seems to hold only for travelers who 
stayed in South Korea for a relatively long time (e.g., >4 days). The 
results suggest that among these long-term visitors, movement predict
ability is generally higher for those with more active travel patterns. 

There are a few possible reasons which lead to the observed rela
tionship for these long-term visitors. First, it is possible that some visi
tors with a large M are “returners”, whose travel patterns are 
characterized by frequent and repetitive visits to some locations (Pap
palardo et al., 2015). In this sense, their travel patterns could be more 
predictable. Another factor is related to the visitors’ travel time budget. 
Sometimes, a larger M means that travelers need to reach many different 
locations during a limited amount of time. Given the constrains in time 
budget, it is possible that some travelers would end up with similar 
routes and visitation patterns that are subject to the availability of 
transportation services, opening hours of tourism attractions, and itin
eraries recommended by travel agencies. These collective behavioral 
choices could have a joint impact on travelers’ movement predictability. 

The results in Fig. 7 lead to another intriguing question—Is it 
possible that travelers’ movement predictability would vary at different 
stages of their journeys? For instance, given two travelers with a similar 
length of stay but different trajectory lengths (M = 10 vs. M = 20), is it 
possible that our models are equally effective when predicting their first 
ten locations, but more or less effective when predicting the remaining 
ten locations of the more active traveler? To address this question, we 
introduce journey ratio to quantify the relative position of a given 

location in a traveler’s trajectory. For instance, when the prediction is 
performed over the 5th location of a traveler with M = 10, the journey 
ratio is computed as 5/10 = 0.5. With this indicator, we are able to 
organize travelers by length of stay (e.g., at an interval of 1 day), and 
then compute the overall prediction accuracy of the two models at 
different stages of travelers’ journeys (i.e., different journey ratios). As 
shown in Fig. 8, we find that after controlling for length of stay, trav
elers’ movement predictability remains relatively stable except at the 
initial and final stages of their journeys. The higher prediction accuracy 
at the two ends may partially be attributed to the converging behaviors 
of travelers at “gateway” cities, such as those with international airports, 
harbors and other points of entry & exit (Lew & McKercher, 2002). The 
results in Fig. 8 indicate that travelers’ movement predictability does not 
vary significantly at different stages of their journeys. This also reaffirms 
our finding that the higher movement predictability of active travelers, 
as shown in Fig. 7, take root in their unique space-time behaviors. 

4.4. Movement predictability within and across cities 

Since the mobile phone dataset covers the entire South Korea, it 
offers us a unique opportunity for investigating the geographic hetero
geneity of movement predictability. In this section, we first discuss the 
two models’ performance when the prediction is made over intra-city or 
cross-city trips. Intra-city trips are defined as movements that occurred 
within a city, while cross-city trips refer to movements that crossed city 
boundaries. Since travelers could visit more than one city during their 

(A) (B) (C)

(D) (E) (F)

Fig. 6. Relationship between movement predictability and length of stay of travelers: (A–C) results of Markov chain model; (D–F) results of LSTM model.  
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(A) (B) (C)

(D) (E) (F)

Fig. 7. Relationship between movement predictability and trajectory length: (A–C) results of Markov chain model; (D–F) results of LSTM model.  
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Fig. 8. Movement predictability of travelers at different stages of their journeys.  
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journeys, the models’ prediction capabilities could vary at different 
geographic scales. Thus, we compute the two models’ prediction accu
racy following the city boundaries in South Korea. As shown in Fig. 9, 
both models show a notable difference in predicting the two types of 
movements. The prediction accuracy over intra-city movements is much 
higher than that of cross-city movements. The results suggest that it is 
challenging to pinpoint travelers’ next location when they were heading 
to another city. This is to some extent expected because travelers’ 
location choices can be quite diverse when switching to a new desti
nation. The results also indicate that the models’ performance is 
comparatively good when the focus is on intra-city trips. The Markov 
chain achieves an overall accuracy of 39.7% for Acc@1, 62.8% for 
Acc@3, and 72.1% for Acc@5 (Fig. 9A), compared to 46.3%, 68.5% and 
76.7% for the LSTM model (Fig. 9B). 

Many real-world applications that involve the prediction and 
recommendation of tourist activities are developed for specific cities or 
destinations. Therefore, it is meaningful to study how movement pre
dictability varies across cities. To achieve this purpose, we compute the 
two models’ prediction accuracy in each city by focusing on intra-city 
movements. As shown in Fig. 10A, we compute the total number of 
travelers who visited each city during the study period. Fig. 10B and C 
shows, respectively, the Acc@1 metric for the Markov chain model and 
LSTM model. Cities with less than 380 travelers are not included in this 
analysis. We find that travelers’ movement predictability varies notably 
across cities. That means even the same model could yield varying levels 
of prediction accuracy when applied in different urban settings. 

By further relating cities’ Acc@1 metrics with total number of 
travelers, as shown in Fig. 11A and B, we find that the number of 
travelers who visited a city is not a decisive factor of movement pre
dictability. In particular, cities with fewer travelers have a large varia
tion in predication accuracy. As the number of travelers gradually 
increases, we observe a general convergence of the Acc@1 metric for 
both models. Note that our mobile phone dataset only covers a period of 
two weeks. Therefore, the number of travelers computed for cities, 
which is subject to factors such as seasonality in tourism and types of 
travelers, might not be representative of their overall attractiveness. 
Although this analysis does not allow for a definitive conclusion, it is 
possible that popular cities or destinations are mixed with visitors with 
similar mobility preferences and those with very unique travel behav
iors. Such mixings may have a neutralizing effect on the models’ pre
diction accuracy. 

As a final step, we compare cities’ Acc@1 metrics from the two 
models. As illustrated in Fig. 11C, the two models’ overall performance 
is highly correlated, with the LSTM model performing better over 

majority of the cities. By highlighting some key tourism destinations 
such as Seoul, Jeju-do, Incheon and Busan, we find that the two models 
have similar prediction accuracy in these cities. As the Markov chain 
model can be built over data such as OD matrices, the result suggests 
that when individual-level data is not accessible, using aggregate 
mobility observations may achieve compatible overall performance, but 
subject to a possible larger inter-personal variation, as suggested by 
Fig. 5C. 

5. Discussion and conclusion 

This study investigates the movement predictability of international 
travelers using a nationwide mobile phone dataset collected in South 
Korea. Two prediction models, the first being Markov chain and the 
second with a recurrent neural network architecture (LSTM), are 
established to achieve this purpose. The results reveal a comprehensive, 
yet complex relationship between movement predictability and other 
factors, such as travelers’ length of stay in the country, activeness in 
their travel patterns, and where the movements were conducted. 

Although tourism activities are regarded as “an escape of daily 
routine”, our results suggest that travelers’ movements still exhibit a 
notable level of predictability. In particular, the Markov chain model 
yields an overall prediction accuracy between 33.4% (Acc@1) and 
64.2% (Acc@5), compared to 41.9% and 67.7% for the LSTM model. 
The LSTM model performs generally better, due to its ability to learn 
from long-term dependencies in individual movements. However, the 
prediction capabilities of both models are largely unequal across indi
vidual travelers. 

By examining movement predictability and travelers’ length of stay 
based on results of the Markov chain model, we find that the prediction 
accuracy tends to peak when length of stay is between two and four 
days. The model’s performance tends to decrease as travelers stayed 
longer (>4 days). However, this gap is filled when the LSTM model is 
applied. The comparison suggests that travelers’ movement predict
ability is model dependent. On the one hand, these “long-term” visitors 
could have relatively unique travel patterns compared to others. 
Therefore, the Markov chain model, which is solely based on transition 
probabilities, performs less well. On the other hand, some unique as
pects of long-term visitors—such as recurrent visits to certain loca
tions—may be captured by the LSTM model, thus improving the model’s 
prediction capabilities. 

By associating movement predictability with length of trajectory, we 
find that travelers who visited more places during their journeys tend to 
be more predictable. However, this conclusion seems to hold only for 

(A) (B)

Fig. 9. Prediction accuracy over intra-city and cross-city trips: (A) Markov chain model; (B) LSTM model.  
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those who stayed in South Korea for a relatively a long time (e.g., >4 
days). Frequent and repetitive visits to certain locations (i.e., the so- 
called “returners”), and constrains in time budget which result into 
similar route or visitation patterns are two possible reasons that lead to 
the observed relationship. The result also indicates that for “short-term” 
visitors (e.g., length of stay <4 days), movement predictability does not 
increase with activeness in travel patterns. 

Finally, we examine how well travelers’ movements can be predicted 
when they were moving within a city or heading towards another. The 
results show that both models perform less well over cross-city move
ments, with their Acc@5 metrics being 33.3% (Markov) and 38.6% 
(LSTM). By further investigating intra-city movements, we observe 
spatial heterogeneity in the models’ performance, meaning that trav
elers’ movements are more predictable in some cities, but less in others. 
The level of predictability is not correlated with the total number of 
travelers who visited the cities. The variations in movement 

predictability is likely to be influenced by other characteristics of cities 
that shape individual travel and collective behavioral dynamics (e.g., 
spatial organization of attractions, deployment of transportation ser
vices, social background of visitors). 

The results in this study suggest that structures of input data, 
configuration of prediction models, and geographic contexts of tourism 
destinations have a joint impact on how we interpret and predict trav
elers’ movements. Given that next-location prediction has many appli
cation scenarios, we want to discuss several implications of this research 
regarding the deployment of tourism services in cities:  

• Individual level data such as travelers’ cellphone trajectories are 
perceived to contain more valuable information on human mobility, 
but also more difficult to acquire, and may raise concerns on privacy 
issues. Our study suggests that prediction models built upon aggre
gate movements (e.g., OD matrices) can also achieve desirable 

Fig. 10. (A) Total number of travelers to each city derived from the mobile phone dataset. (B) Acc@1 metric of intra-city trips for each city based on the Markov 
chain model. (C) Acc@1 metric of intra-city trips for each city based on the LSTM model. 

(A) (B) (C)

Fig. 11. (A) Relationship between cities’ Acc@1 metrics of Markov chain model and total number of travelers. (B) relationship between cities’ Acc@1 metrics of 
LSTM model and total number of travelers. (C) relationship between cities’ Acc@1 metrics of Markov chain model and LSTM model. 
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results in many cities. Because visitors could have similar travel ar
rangements or decision processes, sometimes a simple model which 
is less picky on input data (e.g., Markov chain) can be useful in 
assisting tourism service deployment (e.g., location and activity 
recommendations). 

• On the downside, these simple models tend to favor collective pref
erences, thus overlooking the behavioral needs of specific population 
groups. For instance, the Markov chain model reports varying levels 
of prediction accuracy over travelers with different characteristics. 
Differential strategies can thus be deployed over different population 
groups. In particular, sub models can be trained and used over 
different types of travelers, such as same-day vs. overnight stayers, 
and short-term vs. long-term visitors. Since length of stay is usually 
predetermined before actual trips (Alegre & Pou, 2006), such in
formation — which may be available to tourism service providers (e. 
g., hotel booking & flight itinerary) — can be leveraged to offer 
customized recommendations.  

• There is a notable geographic variation in the two models’ prediction 
accuracy. The finding suggests that our abilities to predict travelers’ 
movements tend to differ across cities or destinations. It also in
dicates that there is no “one-model-fits-all” solution. Building local 
models which consider urban and tourist behavioral contexts may 
further improve quality of tourism services and therefore tourist 
experiences. 

• Although travelers’ movements are partially shaped by administra
tive divisions, previous studies have shown that travel arrangements 
do not always follow boundaries of cities or destinations (Paulino, 
Lozano, & Prats, 2021). Although financial resources, data, and 
service deployment are often separated across tourism destinations, 
a holistic model that can tackle cross-scale tourist movements can be 
beneficial. Our study suggests that accurately predicting the next 
place for a cross-city trip is still challenging. However, multi-task 
models can be built to support next-location and next-city pre
dictions at the same time. Instead of pinpointing where a traveler 
will visit when entering a new city, predicting the next city to be 
visited can be less challenging, and may further improve service 
deployment at tourism destinations (e.g., recommending locations & 
activities to travelers based on prediction results). 

We want to point out a few limitations of this research. First, the two 
prediction models are applied over places derived from a spatial clus
tering algorithm to mitigate uncertainty issues in mobile phone data. 
According to the threshold used in the clustering algorithm (Δd), these 
places could have a radius up to 2km. Therefore, movement predict
ability of travelers could be lower at finer spatial resolutions. Other 
types of mobility observations such as GPS data (Pettersson & Zillinger, 
2011; Shoval & Ahas, 2016; Zheng et al., 2017) and geolocated social 

media (Shao, Zhang, & Li, 2017; Sun et al., 2019) may complement our 
findings by revealing travelers’ movement predictability at POI (point of 
interest) level. Note that these data sources also come up with other 
issues, such as limited sample sizes (GPS) and sparsity of users’ records 
(check-in data & geotagged photos). Future studies could compare or 
even combine different data sources to obtain a more holistic picture of 
tourist travel behavior. Second, this study uses a constant threshold in 
the spatial clustering algorithm. Although this practice ensures that 
movement predictability is assessed under the same spatial scale, the 
method does not consider the varying impact of cellphone tower den
sities across the study area. For example, cellphone towers in certain 
areas (e.g., rural areas or areas in cities with a low population density) 
tend to be sparsely distributed. A spatially adaptive approach by 
considering the spatial heterogeneity may yield new representations of 
places that are useful to certain prediction and location recommendation 
tasks. This is a possible direction for future work. Third, characteristics 
of places can reveal travelers’ activity purposes (Tu et al., 2017; Zhang 
et al., 2020; Zhu et al., 2020), therefore can be incorporated into the 
prediction models to further enhance their performance. Such infor
mation is not leveraged in the current study (e.g., number or percentage 
of POIs by type in each spatial cluster), due to challenges in collecting 
nationwide POI data in South Korea. In the future, it would be mean
ingful to investigate the impact of place characteristics on the prediction 
outcome, for example, to understand types of locations in movement 
sequence that yield high predictability. The characteristics of locations 
can be also incorporated into the models to further improve prediction 
accuracy. Moreover, the mobile phone dataset only covers a period of 
two weeks, therefore does not capture the potential seasonality in 
tourism activities (Ahas, Aasa, Mark, Pae, & Kull, 2007). Longitudinal 
datasets with longer time spans could reveal possible variations in 
movement predictability due to seasonal changes in travel behavior. 
Nevertheless, we believe this research serves as an important effort in 
revealing the movement predictability of travelers at a large scale and 
over a highly representative population. The analytical framework and 
findings can be used to inform tourism planning and service deployment 
in cities. 
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Appendix A. Architecture of LSTM module 

Long Short-Term Memory (LSTM) is a Recurrent Neural Network (RNN) architecture capable of learning temporal dependencies in sequence data. 
A LSTM network consists a chain of repeating modules that share the same structure. Each module takes input from the previous time step, and 
combines it with new information to make predictions. As shown in Fig. A.1, a LSTM module consists of several key components, namely, a cell state 
and three gates (forget gate, input gate and output gate). The cell state combines information from the forget gate and input gate, and is updated each 
time step. The forget gate (ft) receives the output of previous time step (ht− 1) and input vector of current time step (xt), and uses a sigmoid layer to 
determine what information should be retained or thrown away (Eq. (5)). The input gate (it) controls what new information from ht− 1 and xt will be 
added to the cell state (Eqs. (6)–(8)). Finally, the output gate (ot) uses a sigmoid layer by taking ht− 1 and xt (Eq. (9)), and its output is coupled with a 
filtered version of cell state Ct to derive the module output ht (Eq. (10)). The learnable parameters of LSTM are continuously updated in the training 
stage. In this research, the input of the LSTM layer (Fig. 4) is a sequence of vectors (embedding) that denote the locations traversed by a traveler. The 
final output of the LSTM model is a vector that summarizes the probability that each location will be visited by the traveler in the next time step. 
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ft = σ(Wf ⋅[ht− 1, xt] + bf ) (5) 
it = σ(Wi⋅[ht− 1, xt] + bi) (6) 
C̃t = tanh(WC⋅[ht− 1, xt] + bC) (7) 
Ct = ft ∗ Ct− 1 + it ∗ C̃t (8) 
ot = σ(Wo⋅[ht− 1, xt] + bo) (9) 
ht = ot ∗ tanh(Ct) (10) 
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Fig. A.1. Structure of an LSTM module. 

Appendix B. Relationship between movement predictability and trajectory length when controlling for travelers’ length of stay
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Fig. B.2. Relationship between movement predictability and trajectory length after controlling for travelers’ length of stay.  
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