
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ttra21

Transportmetrica A: Transport Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ttra21

Combining individual travel behaviour and
collective preferences for next location prediction

Qiuping Li, Dan Zou & Yang Xu

To cite this article: Qiuping Li, Dan Zou & Yang Xu (2021): Combining individual travel behaviour
and collective preferences for next location prediction, Transportmetrica A: Transport Science, DOI:
10.1080/23249935.2021.1968066

To link to this article:  https://doi.org/10.1080/23249935.2021.1968066

Published online: 12 Sep 2021.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ttra21
https://www.tandfonline.com/loi/ttra21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23249935.2021.1968066
https://doi.org/10.1080/23249935.2021.1968066
https://www.tandfonline.com/action/authorSubmission?journalCode=ttra21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ttra21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23249935.2021.1968066
https://www.tandfonline.com/doi/mlt/10.1080/23249935.2021.1968066
http://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2021.1968066&domain=pdf&date_stamp=2021-09-12
http://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2021.1968066&domain=pdf&date_stamp=2021-09-12


TRANSPORTMETRICA A: TRANSPORT SCIENCE
https://doi.org/10.1080/23249935.2021.1968066

Combining individual travel behaviour and collective
preferences for next location prediction

Qiuping Lia,b, Dan Zoua,b and Yang Xu c,d

aSchool of Geography and Planning, Sun Yat-Sen University, Guangzhou, People’s Republic of China;
bGuangdong Provincial Engineering Research Center for Public Security and Disaster, Guangzhou, People’s
Republic of China; cDepartment of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic
University, Kowloon, Hong Kong; dThe Hong Kong Polytechnic University Shenzhen Research Institute,
Shenzhen, People’s Republic of China

ABSTRACT
Many mobility prediction models have emerged over the past
decade topredict a user’s next location through theutilisationof user
trajectories. However, the performance is constrained by the quan-
tity of user trajectory data. This research introduces a new approach
by combining knowledge of individual travel behaviour and collec-
tive preferences of users sharing similar daily activity patterns. First,
users are clustered into different groups by their daily activity pro-
files. Second, each group’s collective preferences (i.e. activity and
travel distance preferences) are extracted. Then, individual travel
behaviour and collective preferences are integrated for thenext loca-
tion prediction. A mobile phone dataset from Shanghai, China, is
used formodel validation. The results show that the proposedmodel
achieves a prediction accuracy of over 80% during most of the day.
Moreover, there is amaximum increase of 16% inprediction accuracy
compared with baseline models when users are highly mobile.
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1. Introduction

The rapid development of sensor networks andmobile internet technologies has provided
massive trajectory data for humanmobility research and applications. People’smovements
inurbanareas reflect the complicated relationshipbetweenhumanbeings andurban space
(ShawandSui 2018; Yuan2018). Understandingandpredictinghumanmobility is crucial for
transportation demand estimation (Huang et al. 2018), urban planning and management
(Yuan, Zheng, and Xie 2012), individual location recommendations (Calabrese, Lorenzo,
and Ratti 2010), and disease prevention and control (Wen, Hsu, and Hu 2018). It can also
help us deepen the understandingof the dynamic interactions betweenhumans andurban
geographical space.

Research on human mobility modelling has progressed very rapidly over the past
decade. A large number of human mobility models have emerged. These studies are
either at the collective level or the individual level. Models at the collective level, such
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Table 1. Summary of selected research in individual next location prediction.

Related work Basic Model Main data source Model features

Huang (2017) Markov model Social media data Considers the user’s historical
trajectories and his/her online
behaviours

Chen et al. (2019) Bayesian model Social media data Considers the user’s historical
trajectories and his/her online
behaviours

Li, Lu, et al. (2020) LSTM Cellular data Considers the user’s historical
trajectories and the closeness and
periodic movement patterns in the
trajectories

Yu et al. (2015) Markov model GPS trajectory data Combines the user’s activity pattern
and the common activity pattern of
all available users

Hawelka et al. (2017) EW forecaster Cellular data Leverages the user’s historical
trajectories and the mobility traces
of others

Wang et al. (2020) Bayesian mixture model Cellular data Leverages the user’s historical
trajectories and the mobility traces
of others

as the gravity model and radiation model (Zipf 1946; Simini et al. 2012), aim to under-
stand the mobility flow between two different locations. However, they are mostly static,
and the detailed dynamic features of human movements at the individual level are often
lost (Yan et al. 2017). A large portion of human mobility prediction models at the individ-
ual level aim to predict an individual’s next location based on their historical trajectories
(Calabrese, Lorenzo, and Ratti 2010; Huang 2017; Lv et al. 2017; Zhao, Koutsopoulos, and
Zhao 2018; Chen et al. 2019; Li, Gui, et al. 2020; Wang et al. 2020). The main related
works, including basic models, main data sources, and features of models, are listed in
Table 1. As seen in Table 1, the individual location prediction models can be classified into
two groups. In the first group, the prediction models use only the user’s past locations
and other information accompanying the user’s trajectory to estimate the next location.
For instance, Huang (2017) proposed a Markov model for predicting the next location of
a social media user using their long-term cumulative sparse trajectory data and online
behaviours. Recently, recurrent neural network and long short-term memory (LSTM) mod-
els have become increasingly popular in next location prediction because they are stable
and robust for modelling long-range dependencies (Li et al. 2020; Choi, Yeo, and Kim 2018;
Li, Lu, et al. 2020). Li, Lu, et al. (2020) proposed a fuzzy LSTM model that considers the
user’s trajectory and the closeness and periodic movement patterns revealed in the tra-
jectory. The prediction accuracy improved compared to the traditional Markov model. The
main disadvantage of these models, however, is that their prediction performance is con-
strained by the quantity of user trajectory data. If the historical trajectory data are short or
very sparse, the parameters in the abovementioned models (e.g. Markov model and LSTM
model) are difficult to estimate, leading to low prediction accuracy (Baumann et al. 2018;
Wang et al. 2020). Furthermore, the predicted locations can only be selected from user
historical locations. Therefore, it is difficult for thesemodels to accurately predictwhenpeo-
ple are continually exploring new locations during movement (Baumann, Kleiminger, and
Santini 2013; Cuttone, Lehmann, and González 2018).
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The second group of models leverages not only the user’s trajectory but also the tra-
jectories of others to enhance the prediction performance (Calabrese, Lorenzo, and Ratti
2010; DeDomenico, Lima, andMusolesi 2013; Hawelka et al. 2017; Yu et al. 2015;Wang et al.
2020). For instance, Calabrese, Lorenzo, and Ratti (2010) proposed aweighted combination
of the individual’s past trajectory and collective geographic preferences for user next loca-
tion prediction. Yu et al. (2015) combined the individual’s activity pattern and the common
activity pattern in their model, and the weights of these two components were dynam-
ically adjusted depending on the volume of the user’s historical trajectories. For users’
location prediction with a short and nonrepetitive data history, such as tourists in a foreign
country, Hawelka et al. (2017) proposed a sequential learning algorithm that leveraged the
mobility traces of other users. A recent study by Wang et al. (2020) proposed a multitask
learning-based algorithm to predict users’ mobility by learning the mobility behaviours of
others to overcome the sparseness issue and improve prediction performance. The results
in these studies show the advantage of leveraging the trajectories of other users in the pre-
diction model. However, the population is viewed as a single and homogeneous traveller
group in these models. The collective mobility patterns or preferences are extracted from
the entire population, and the heterogeneity of users’ daily activity patterns is ignored. In
fact, people with different daily activity patterns, such as regular workers and stay-at-home
workers, have distinct travel behaviours and location preferences (Jiang, Joseph Ferreira,
and Gonzalez 2012; Lv et al. 2017; Chen et al. 2018; Yang, Yan, and Ukkusuri 2018). Fur-
ther consideration of the heterogeneous daily travel patterns of users has the potential to
improve the accuracy of the abovementioned location prediction models.

In this paper, we introduce a new approach for next location prediction by combin-
ing the knowledge of individual travel behaviour with the location preferences of users
that share similar daily activity patterns. In contrast to most existing models, for users
with limited trajectory data, the proposed method can leverage the location information
of people who have similar daily activity patterns. First, users are clustered into different
groups by their daily activity patterns. Second, each group’s collective location preferences
(i.e. activity and travel distance preferences) are extracted. Then, for each user, their travel
behaviours and the group’s collective location preferences to which they belong are inte-
grated to predict their next location. Finally, mobile phone positioning data of users in
Shanghai, China, are used to evaluate the proposed model’s performance.

The rest of this paper is organised as follows. Section 2 describes the methodology,
including user clustering, the individual mobility prediction model, and the collective
location preference calculation. Section 3 introduces the study area and used data. The
experimental results andanalysis arepresented in Section4. Section5discusses the impacts
of the estimation of missing locations and activities and the impacts of collective location
preferences on the proposed model. The final section provides concluding remarks and
future research directions.

2. Methodology

In this study, we aim to predict the next location of a user given their historical trajectories
and the group’s collective location preferences to which they belong. For simplicity, the
urban space is divided into N grids, and one grid represents a location. Before establishing
the mathematical model, we first introduce the definitions in this research.
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Figure 1. The overall workflow for building the prediction model.

Definition 1. A location set DL_set (u) is the set of historical trajectories of user u in m days. It
is defined as follows:

DLset(u) = {
Day1(u) = 〈

x1u , . . . , x
t
u, . . . , x

n
u

〉
, . . . ,Daym(u) = 〈

x1u , . . . x
t−1
u

〉}
,

whereDaym(u) is a sequenceof locationsofuseruon themth day,andxtu represents the location
of user u at time t-1.

Definition 2. An activity set DA (u) is the set of activities of user u in m days. It is defined as
follows:

DA_set(u) = {
Day1(u) = 〈

a1u, . . . , a
t
u, . . . , a

n
u

〉
, . . . ,Daym(u) = 〈

a1u, . . . , a
t−1
u

〉}
,

where Daym(u) = 〈
a1u, . . . , a

t−1
u

〉
is a sequence of activities of user u on the mth day, and atu is

the activity that user u participates in at time t-1. In this definition, the activity type is ‘home’,
‘work’, or ‘other’.

The following section presents the methodology for predicting a user’s next location
by combining their travel behaviour and collective location preferences (i.e. activity and
travel distance preferences). Theworkflow of the proposedmodel is shown in Figure 1. The
threemain components of themodel are user clustering,Markov-based location prediction
based on an individual’s historical trajectories, and collective location preference extraction
for each cluster of users.

2.1. User clustering

Users are clustered based on their daily activity profiles. Before clustering, the location set
of user u should be converted to an activity set. Because activity type information is unavail-
able in mobile phone trajectories, activities such as ‘home’ and ‘work’ are usually identified
by space and time constraints (Liu et al. 2014; Alexander et al. 2015; Tu et al. 2017). For the
sequence of locations of user u on the ith day, if the distance of several consecutive location
records is less than 500mand the duration from the first to the last record of these locations
ismore than 4 h at night, their activity type is identified as ‘home’ (Cao et al. 2017). Similarly,
if the distance of several consecutive location records is less than 500m and the duration
from the first to the last record of these locations is more than 3 h during the daytime, their
activity type is identified as ‘work’ (Cao et al. 2017). Then, the activity type of the remaining
location records in DL_set(u) is identified as ‘other’.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 5

After each location in DL_set(u) is labelled correctly as ‘home’, ‘work’, or ‘other’, the fre-
quency of each type of activity at each time t for user u in a total of m sample days is
calculated. For example, the frequency of ‘home’ activity fhtu is calculated as follows:

fhtu =
∑i=m

i=1 Ah(t, i)
n

(1)

Ah(t, i) =
{
1, if activity type at time t of the ith day is ‘home’
0, else

(2)

Similarly, the frequencies of ‘work’ and ‘other’ activities are also calculated. Then, the daily
activity frequency sequence of user u can be represented by the following vector:

AF(u) = {
Home(u) = 〈

fh1u, . . . , fh
t
u, . . . , fh

n
u

〉
,

Work(u) = 〈
fw1

u , . . . , fw
t
u, . . . , fw

n
u

〉
,

Other(u) = 〈
fo1u, . . . , fo

t
u, . . . , fo

n
u

〉}
where fwt

u is the frequency of the ‘work’ activity and fotu is the frequency of the ‘other’
activity.

Finally, the k-means clustering method is used to cluster the daily activity frequency
sequences of all users AF = {AF(1), . . . , AF(s)}, where s is the number of users. Then, the
users can be classified into several groups with heterogeneous daily activity patterns.

2.2. Individual mobility prediction based on users’ historical trajectories

Markov models have been widely applied to explain human mobility patterns and predict
the locations of individuals because of their simplicity and effectiveness (Huang 2017; Qiao
et al. 2018). In this study,we chose theMarkovmodel as the first part of our proposedmodel
to predict the user’s next location based on their historical trajectories. The location transi-
tion probabilitymatrix (Figure 2) is established and updated as the user’s historical location
sequence increases. For user u with daily location set DL_set (u), their location choice for
time t is modelled as the following formula:

PM(xtu = j|xt−1
u = i) = pt−1

ij , i, j ∈ [1, . . . ,N] (3)

where pt−1
ij is the transition probability from locations i to j updated at time t-1. If the histor-

ical location sequence of user u is short, the location transition probability matrix is easily
biased. Therefore, it is necessary to leverage the collective location preferences of other
users with similar daily travel patterns to obtain better prediction performance.

2.3. Collective location preferences

The other part of the proposed model is the collective location preferences extracted from
the trajectories of users who share similar daily activity patterns. The collective location
preferences here are users’ preferences for different types of activities and different travel
distances.
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Figure 2. Transition probability distribution based on historical user trajectories.

2.3.1. Activity type preferences
A user’s next location is constrained by their activity type (or trip purpose) (Liu et al. 2015;
Li et al. 2015; Yu et al. 2015); therefore, the activity information of users with similar daily
activity patterns is used as one component of collective location preferences to enhance
the performance of the Markov-based individual mobility prediction model in this study.

Users’ preferences for ‘home’, ‘work’, and ‘other’ activities are represented by the prob-
ability that they choose these activities. The activity transition probability matrix is estab-
lished from the daily activity sequence of all users in the same group. Given the activity
transition matrix of group S, the probability that user u will choose activity aq for time t is
calculated as:

P(atu = aq|at−1
u = ap) = pt−1

apaq (4)

where pt−1
apaq is the activity transition probability from activity ap to activity aq at time t-1.

Subsequently, the user’s next location can be predicted based on their next activity
choice. If the current location of individual u is i, the probability they will choose location j
as the next location is:

PAS(x
t
u = j|xt−1

u = i) = P(at−1
u = ap|xt−1

u = i) · P(atu = aq|at−1
u = ap) · P(xtu = j|atu = aq)

(5)

where P(at−1
u = ap|xt−1

u = i) is the probability that location i is labelled activity ap. P(xtu =
j|atu = aq) is the probability that location jwill be selected at time t if the current activity of
user u is aq. It is calculated as follows:

P(xtu = j|atu = aq) =
{
1 if j ∈ DL_Set(S)

0 else
(6)

where DL_Set(S) is the location candidate set of all visited locations of users in group S.

2.3.2. Travel distance preferences
In many circumstances, people are likely to travel short distances, which shows a decay
pattern in the travel distance of people’s trips (Mckercher and Lew 2003; Zheng and Zhou
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2017). There is a decaying relationship between travel distance and its frequency, and it
differs among users with different daily activity patterns (Yan 2011). Therefore, we build
one travel distance decay function for each group of users. The travel distance preferences
of each group are calculated by their travel distance decay functions.

For user u in group S, if they go from location i at time t-1, then the probability they will
appear at location j at time t is as follows:

PDS(x
t
u = j|xt−1

u = i) = f Sd (dij, t − 1) (7)

where f Sd (dij, t − 1) is the travel distance decay function of users in group S and dij is the dis-
tance from location i to location j. The travel distance decay function f Sd (dij, t − 1) is defined
as follows:

f Sd (dij, t − 1) = 1
w ∗ m

w∑
u=1

m∑
k=1

P(dt−1
uij (k) = d) (8)

wheredt−1
uij (k) is thedistance from location i at time t-1 to location j at time t in the trajectory

of user u of the kth day andw is the number of users in group S.
The next location of individual u is then predicted by the linearweighting function of PM,

PAS , and PDS as follows:

P(xtu = j|xt−1
u = i) = α(t)PM + β(t)PAS + γ (t)PDS , u ∈ S (9)

where α(t), β(t), and γ (t) are the weights of PM, PAS and PDS , respectively. They are time-
variant parameters, and their sum equals 1. We denote our proposed mobility prediction
model based on users’ travel behaviour and collective location preferences of users with
similar daily activity patterns as MUCS.

3. Data description

In this study, we used Shanghai mobile phone positioning data to validate our model’s
efficiency. Shanghai Unicom provided the data. Shanghai is one of the largest economic
centres in China. It has comprehensive urban functions and well-developed transportation
systems, providing a wide range of opportunities for residents’ daily travel and activities.
The mobile phone positioning data include five working days on December 28, 29, and 30
in 2015 and January 4 and 5 in 2016. The experimental area includes all 15 administrative
districts of Shanghai except Chongming, as shown in Figure 3.

The positions of mobile phone users were recorded at hourly intervals. The dataset con-
tains 5,776,605 position records of 631,645 phone users, and each user had 8.5 position
records a day on average. For privacy protection, this study did not contain any personal
information, andeachphoneuser in thedata setwas assignedauser ID. Among the631,645
phone users, we selected users with at least 20 position records per day during five work-
ing days. Then, the nearest-neighbour interpolation method (Hoteit et al. 2014; Liu et al.
2018) was utilised to fill in the missing locations of these selected users’ trajectories at
hourly intervals, which is a commonly used trajectory interpolation method. By using this
method, a missing record can be interpolated by the value of its nearest sampling position
in time. Finally, the oscillations (i.e. ping-pong effect) of mobile phone positioning data
were approached using the point-clustering method proposed by Xu et al. (2020). After
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Figure 3. Experiment area.

Table 2. Example of mobile phone positioning data.

User ID Date Time Longitude Latitude

User 1 2015/12/28 1:00 120.∗∗∗ 30.∗∗∗
User 1 2015/12/28 2:00 120.∗∗∗ 30.∗∗∗
. . . . . . . . . . . . . . .
User 1 2015/12/28 24:00 120.∗∗∗ 30.∗∗∗

Figure 4. (a) Spatial distribution of mobile phone towers in the experimental area. (b) Cumulative
distribution of the distance between two adjacent mobile phone towers.

data pre-processing, we obtained 4,145 mobile phone users with good data quality and
used them as the samples for this study. An example of mobile phone position records of
an individual in a day is shown in Table 2.

Figure 4(a) shows the spatial distribution of the mobile phone towers in this study. Each
tower is representedby a Thiessenpolygon todenote its service area. Thedistancebetween
any two adjacent mobile phone towers was calculated, and the distance distribution is
shown in Figure 4(b). It can be found from the curve of Figure 4(b) that approximately
88% of the distance between two adjacent mobile phone towers was less than 500m.
We divided the study area into 500m by 500m grids for simplicity and to speed up the
calculations. Ultimately, there were 22,098 grid cells (5,603.3 km2) in the experimental area.
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Figure 5. The SSEs with different values of k.

Figure 6. Activity frequency profiles of the five different user clusters.

4. Experiments and results

4.1. User clustering results

For each user u, the activity frequency vector AF(u) was calculated according to the for-
mulas described in Section 2.1. Then, the k-means clustering method was used to classify
vector AF(u) of all users. The sum of squared error (SSE) was used to determine the best k.
As shown in Figure 5, the SSE gradually decreased as k increased from 2 to 15. According
to the elbow rule, when the clustering number was 5, it provided a more stable clustering
result and a richer partition of individuals’ daily activity patterns.

The curves of the cluster centre of five clusters are shown in Figure 6. The properties of
users of each cluster are described as follows:

Familyperson: Users inCluster #1have a veryhigh frequency (0.89∼0.98) of ‘home’ activ-
ity all day long,whichmeans they spendmost of their time at home. This cluster is large and
includes 43.5% of all samples.
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Active family person: For users in Cluster #2, the frequency of ‘home’ activity is also high
(approximately 0.6), and the frequency of ‘work’ and ‘other’ activities is 0.2 for each. These
users often stay at home and sometimes work or perform other activities during the day.
The proportion of users in Cluster #2 is 14.3%.

Regular worker: Users in Cluster #3 have a regular schedule. They often leave home
at approximately 8:00 and return home at approximately 18:00. During the day, they are
always at work. The users in this cluster share 19.5% of all samples.

Afternoonworker: Users in Cluster #4 also have a regular schedule. The difference is that
users in Cluster #4 start work approximately two hours later than those in Cluster #4. The
major working time for them is in the afternoon. The proportion of users in Cluster #4 is
10.4%.

Part-time worker: Users in Cluster #5 are ‘part-time workers’ because they do not always
work. The frequency of ‘work’ activity is only approximately 0.6 during the daytime, while
the frequency of ‘other’ activity is 0.2, which is the highest frequency among all five clusters.
The users in Cluster #5 account for 12.3% of all samples.

Next, the activity preferences of the abovementioned five clusters of users were calcu-
lated and compared. The hourly transition probabilities between three types of activities
(i.e. ‘home’, ‘work’, and ‘other’) were calculated for each group. In Figure 7, the transition
probability matrix per hour is visualised by a 3×3 square, in which each row represents
‘home’, ‘work’ and ‘other’ activities in turn, as does each column. The transition probabilities
between the three types of activities are rendered by using gradient colours.

As expected, the activity preferences of the five groups of users are different. The transi-
tion matrix of ‘family person’ changes little in 24 h, and the probability of ‘home’ to ‘home’
is high all the time. The transition matrix of ‘active family person’ has a similar pattern to
that of ‘family person’, except for higher frequencies of ‘work’ and ‘other’ activities. For
‘regular worker’ and ‘afternoon worker’, the probabilities of ‘home’ to ‘work’, ‘work’ to
‘work’, and ‘other’ to ‘work’ are high during the daytime (9:00–17:00 for ‘regular worker’
and 11:00–20:00 for ‘afternoon worker’). Moreover, the probabilities of ‘work’ to ‘home’
and ‘other’ to ‘home’ increase from 18:00 for ‘regular worker’ and three hours later for
‘afternoon worker’. For ‘part-time worker’, the probabilities of ‘home’ to ‘work’, ‘work’ to
‘work’, and ‘other’ to ‘work’ in the daytime are not as high as those of ‘regular worker’
and ‘afternoon worker’. Apart from ‘work’, some users in ‘part-time worker’ also partici-
pate in ‘other’ activities. The activity preferences of different groups of people can help us
understand their travel motivations, making the prediction of the user’s next locationmore
accurate.

4.2. Prediction results evaluation and analysis

4.2.1. Evaluationmetric and baselinemodels
We first introduce theperformancemetric andbaselinemodels for evaluating the efficiency
of the proposed model. The average location prediction accuracy for the next time t is
defined by the ratio of the number of users whose locations are correctly predicted to the
number of all users. The formula is as follows:

accuracy(t) = Ncorrect(t)

Nall(t)
(10)
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Figure 7. The activity preferences of different groups of people.

where Ncorrect(t) is the number of users whose locations are correctly predicted, and Nall(t)
is the number of all users.

We used 70% of each group’s samples as the training dataset and the rest as the testing
set. Sincemobility behaviours vary among the five groups of users, the values of α, β , and γ

differed in eachgroup’s predictionmodels. An iterativeprocedurewasutilised todetermine
the optimal values of these three parameters. From the training dataset, the data of the first
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m-1 days were chosen to build the prediction models with varying α, β , and γ values, and
the data of themth daywere utilised to validate the correspondingmodels. For each group,
α,β , and γ were set to 0 in the beginning, and then a triple loopwas used to increment their
values by 0.1. At each iteration, the average prediction accuracy of users in this group was
calculated. Subsequently, the combination of α, β , and γ with the highest accuracy was
selected.

Our model was compared with the following three baseline models:

(a) Markov model (MM): This is the first component of the proposed model, in which the
trajectory of each user is modelled as a 1-order Markov chain when conducting next-
place prediction (Gambs, Killijian, and Del Prado Cortez 2012).

(b) Long short-termmemorymodel (LSTM): Thismodel is a recurrent neural network archi-
tecture used in the field of deep learning (Sutskever, Martens, and Hinton 2011). In this
model, the trajectory of each user is modelled as a time sequence, and the long-range
dependencies are considered.

(c) Mobility prediction based on historical user trajectories and collective location prefer-
ences of all users (MUCA): This model is similar to the proposed MUCS model, except
for the collective location preferences extracted from all users.

4.2.2. Comparisonwith baselinemodels at different times of the day
Figure 8 shows the prediction accuracy of the four models at different times of the day.
The evening hours (23:00–6:00) were not included because the four models’ prediction
accuracies were similar and are all over 90% during this period. As shown in Figure 8, the
MUCS achieved a prediction accuracy of over 80% during most of the day. The prediction
accuracy of the four models varied at different times, but a general trend can be observed:
the accuracy decreased gradually from 7:00 to 9:00, then rose from 9:00 to 15:00, then
decreased again from 15:00 to 18:00, and finally rose again after 18:00. The two lowest
points on the three models’ curves were at 9:00 and 18:00, exactly the most active periods
of daily human movements. Both MUCA and MUCS performed better than MM and LSTM,
which indicates that it is effective to consider collective preferences. LSTMwas slightly bet-
ter thanMMbecause LSTM considers the long-range dependencies of individuals’ location
sequences. However, as an advanced machine-learning method, LSTM was not very effec-
tive due to insufficient training data. Moreover, the MUCS achieved a 1% to 3% improve-
ment compared with the MUCA when people were highly active, e.g. 9:00–10:00 and
16:00–20:00. The maximum improvement of the MUCS over the MUCA occurred at 17:00
when the prediction accuracy of the MUCS model was 84.3% and that of the MUCAmodel
was 81.3%. We believe this is the result of considering the distinct daily activity patterns
of users.

Next, we further compared the performance of the four models on five groups of users
with distinct daily activity patterns. As shown in Figure 9(a)–(e), MUCS performed the best
in five groups of users, followed byMUCA, while the worst wasMM and LSTM. For the ‘fam-
ily person’ group, the curves of prediction accuracy of the four models were stable, and the
accuracy was high throughout the day, in the range of 90% to 100% (Figure 9 (a)). Figure
9(b) shows the prediction results of the ‘active family person’ group. The prediction accu-
racywas ashighas that of the ‘familyperson’ groupatnightbutdecreased toapproximately
75% during the daytime. Due to the highly stationary nature of users’ trajectories in groups
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Figure 8. Prediction accuracy in the testing set from 7:00 to 21:00.

of ‘family person’ and ‘active family person’, theprediction accuracies ofMMandLSTMwere
significantly high, and the improvements of MUCS and MUCA to MM and LSTM were rela-
tively small. Figure 9(c)–(e) shows the prediction results of the ‘regular worker’, ‘afternoon
worker’, and ‘part-time worker’ groups, of which the curves show similar ‘W’ patterns. The
prediction accuracy was high when people stayed at home or work and decreased when
theywere travelling or participating in other activities. For these three groups, the improve-
ment of MUCS was evident, and themaximum accuracy increases in MUCA, MM, and LSTM
were up to 6%, 16%, and 10%, respectively.

We also report the performance of the MUCS and three baseline models at 9:00, 13:00,
17:00, and 21:00 in Table 3. It is clearly shown in Table 3 that MUCS outperformed the three
baseline models in most cases. The largest improvement occurred at 9:00 for the ‘regu-
lar worker’ group. At 9:00, the prediction accuracies of MUCS, MUCA, MM, and LSTM were
72.76%, 66.77%, 56.79%, and 65.02%, respectively. Compared with MM, MUCS increased
the prediction accuracy by 16%, whichwas themaximum accuracy increase in theMUCS of
the three baseline models.

4.2.3. Comparative performance on different historical sequence lengths
The performance of the prediction model may vary with the length of the historical trajec-
tory of users. Therefore, three models’ prediction performances (MUCS, MUCA, and MM)
with different lengths of user historical sequences are discussed in this section. We ran-
domly sampled 50% of users in each group and tested the prediction accuracy of these
users by assuming that each user has different lengths of trajectories ranging from 6 to 96.
The LSTM model was not included for comparison because it is very demanding on the
length of training trajectories. In most cases, the lengths of the trajectories (from 6 to 96)
were not sufficient for the LSTM model. Therefore, comparing with the LSTM model here
does not make sense.
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Figure 9. Prediction accuracy of five groups of users at different times of the day.

Table 3. Prediction accuracy of the four models on five groups of users.

Accuracy (%)
Groups Models 9:00 13:00 17:00 21:00

Family person MUCS 95.17 93.37 93.94 95.55
MUCA 95.19 93.28 92.54 95.17
MM 95.11 92.08 91.97 94.88
LSTM 94.79 92.52 93.18 95.23

Active family person MUCS 85.49 81.17 75.18 89.50
MUCA 86.69 81.38 75.50 89.78
MM 85.31 77.45 72.63 89.17
LSTM 83.50 76.26 73.40 87.88

Regular worker MUCS 72.76 91.39 70.47 90.31
MUCA 66.77 92.18 68.48 89.61
MM 56.79 90.06 69.84 88.95
LSTM 65.02 92.09 67.99 89.12

Afternoon worker MUCS 63.52 89.78 91.29 68.33
MUCA 60.78 89.92 90.77 66.19
MM 60.47 89.59 91.03 62.79
LSTM 60.79 87.70 90.72 63.34

Part-time worker MUCS 57.31 78.29 64.30 91.76
MUCA 58.00 78.10 61.38 91.65
MM 55.94 77.09 58.63 90.17
LSTM 54.19 75.83 60.82 90.06

As shown in Figure 10, the two models (i.e. MUCS and MUCA) based on both the user’s
historical trajectories and the collective location preferences performedmore robustly than
MM. Especially in the early stagewhen the length of the user’s historical sequencewas very
short, the improvement byMUCS andMUCAwas evident. It is noted that MUCS performed
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Figure 10. Prediction accuracy of five groups of users with different lengths of historical trajectory.

better thanMUCA for all five groups due to exploiting the collective location preferences of
users with similar daily activity patterns. Based only on the user’s historical trajectories, MM
encounters the cold start problem in the early stage (sequence length less than 24 h). The
prediction accuracy rosegreatlywith the increasing lengthof theuser’s historical trajectory.

For the ‘family person’ group (Figure 10(a)), the prediction accuracy of all three models
was high even in the early stage, and it reachedmore than 93%. The limitedhistorical trajec-
tory had little impact on the next location prediction in this group. Similarly, the prediction
accuracy of the MUCS andMUCAwas also high (more than 80%) for the users of the ‘active
family person’ group in the early stage. This means that even with the limited historical tra-
jectory length, the ‘active family person’ group’s prediction accuracy can be guaranteed
by considering collective location preferences. Compared with ‘family person’ and ‘active
family person’, the users in the ‘regular worker’, ‘afternoon worker’, and ‘part-time worker’
groups visitedmanymore locations. Hence, their prediction accuracywas lower in the early
stage, and the prediction accuracy improvements of MUCS, MUCA, and MM were more
evident.

4.2.4. Analysis of parameters of MUCS
The optimal values of parameters α, β , and γ of the MUCS may vary at different times of
the day. Therefore, the optimal values of these three parameters from 1:00 to 24:00 are
calculated to find thebest parameter settingofMUCS for eachprediction time. In the exper-
iment, we found that themodel obtained the highest prediction accuracy inmore than one
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Figure 11. Variations of α, β and γ from 1:00 to 24:00.

combination of parameters. Therefore, we used a boxplot to show the distributions of α, β ,
and γ . Figure 11 shows the distributions of α, β , and γ from 1:00 to 24:00 of the ‘regular
worker’ group (see Appendix 1 for distributions for ‘family person’, ‘active family person’,
‘afternoon worker’, and ‘part-time worker’).

As shown in Figure 11, the median values of α, β , and γ show distinct variation pat-
terns. These parameters vary among users in different clusters and vary with time, which
helps us understand how these behavioural factors impact an individual’s next location
prediction at different times. By combining the analysis in Figure 6, it was found that the
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median values of α and γ showed negative correlations with the ‘other’ activity profile of
‘regular worker’. The median values of α and γ were relatively high when users stayed at
home at night (22:00–6:00) or workplaces (12:00–17:00), which indicates that individual
travel behaviour and collective travel distance preference are important for predicting the
locations of the ‘regular worker’ group at these times. During these two time periods, the
probability of users exploring new locations was low; thus, higher α values can help predict
their next locations by giving higher probabilities to grid cells they visited before. Similarly,
users were also less likely to travel very long distances at these times, and higher γ values
achievedhigher probabilities ongrid cells close to their current locations. Themedian value
of β had a bimodal variation pattern and was positively correlated with the ‘other’ activity
profile of ‘regular worker’. The value of β was low when people stayed at home at night
(22:00–6:00) but high when they commuted or participated in ‘other’ activities (7:00–10:00
and 18:00–21:00), which suggests that the activity preference is important for location pre-
diction in the ‘regular worker’ group in two periods (7:00–10:00 and 18:00–21:00). Higher
values of β indicated that the prediction model achieved higher probabilities to grid cells
where users’ preferred activities took place previously.

In Appendix 1, we can also observe that the value of β usually increased when users’
locations changed and decreased when users stayed at home or workplaces. In contrast,
the variation patterns of α and γ were opposite to that of β . Among the five groups of
users, ‘active family person’ and ‘part-time worker’ had the most similar variation patterns
of α, β , and γ . These two groups of users both had a relatively high proportion of ‘other’
activities during the daytime; therefore, the values of γ remained at a low level.

5. Discussion

In this study, the missing locations of 4,145 selected mobile phone users were estimated
using the nearest-neighbour interpolationmethod. To evaluate the impacts of themissing
location estimation accuracy on the performance of MUCS, two more experiments were
implemented.

First, we compared the missing location estimation accuracy of the nearest-neighbour
interpolation method with the other two interpolation methods, i.e. linear interpolation
and gradient boosting decision tree (GBDT) (Li et al. 2019). Linear interpolation uses spa-
tial–temporal correlations among data to interpolate themissing records, whereas GBDT is
amachine-learningapproach that uses some relevant features topredictmissing records. In
this study, the features of GBDTwere the same as those in Li et al. (2019). Themean absolute
error (MAE) was used to evaluate the performance of these interpolation methods. After
interpolation, the MAE values of the nearest-neighbour interpolation, linear interpolation
and GBDT methods were 450, 440, and 700m, respectively. The nearest-neighbour inter-
polation and linear interpolation methods performed better than GBDT. This was because
the missing ratio of our mobile phone positioning data of 4,145 users was low (only 11%),
and few consecutive records were missing. Thus, simple interpolation methods, such as
nearest-neighbour interpolation and linear interpolation, actually obtained better results
than machine-learning-based methods.

Then, the performance of MUCS on trajectory data sets interpolated by these three
methods was analysed. The average prediction accuracy of all mobile phone users and
the maximum differences among the three datasets are reported in Table 4. As shown in
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Table 4. Performance of MUCS on three interpolated trajectory datasets

Accuracy (%)
Dataset 5:00 9:00 13:00 17:00 21:00

Nearest_data 98.40 81.45 89.00 84.34 90.37
Linear_data 98.29 80.53 88.64 81.60 90.04
GBDT_data 98.23 79.98 87.21 82.05 89.82
Maximum differences 0.17 1.47 1.79 2.74 0.55

Table 5. Parameter settings in three scenarios.

Collective preferences
Scenario User’s travel behaviour Activity type Travel distance

MUCS (β = 0) Y N Y
MUCS (γ = 0) Y Y N
MUCS Y Y Y

Table 4, the maximum differences among the three datasets at five different times (5:00,
9:00, 13:00, 17:00, and 21:00) were less than 3%. MUCS performed better on Nearest_data
(the trajectory data reconstructed by the nearest-neighbour interpolation method) than
Linear_data, although theMAE value of the former is a slightly larger than that of the latter.
This is because the linear interpolationmethod generates new locations that are difficult to
predict accurately. In contrast, nearest-neighbour interpolation uses the nearest sampling
position in time and does not generate new locations. The proposed approach performed
the worst on GBDT_data because its MAE was the largest.

We also discuss is the impacts of the activity estimation accuracy on the MUCS per-
formance. Since activity type information is unavailable in mobile phone trajectories, we
identified activities using spatial and temporal constraints. Two types of highly regular
activities (i.e. ‘home’ and ‘work’) were identified in this study. In general, residents usu-
ally stayed home at night and worked during the daytime, so the identification of ‘home’
and ‘work’ wasmuch easier andmore accurate than other types of activities, such as ‘shop-
ping’ and ‘eating out’. In Yin et al. (2016), the identification accuracies of ‘home’ and ‘work’
by space and time constraints were both up to 99%. In Liu et al. (2013), the identification
accuracies of ‘home’ and ‘work’ were also more than 80%. We did not validate our activ-
ity identification results because of the difficulty in acquiring ground truth human activity
data. According to the high accuracy obtained by the abovementioned studies, we think
the estimation of highly regular activities, such as ‘home’ and ‘work’, has a limited impact
on subsequent location prediction.

Finally, we assessed the impacts of collective location preferences on model perfor-
mance. The collective location preferences in this study consisted of two parts: activity type
preference and travel distance preference. We designed three scenarios for a performance
comparison (Table 5).

It is clearly shown in Figure 12 that the decrease in prediction accuracy is apparent for
‘family person’, ‘regular worker’, and ‘afternoon worker’ when β is 0. Take ‘regular worker’
as an example. The decline was concentratedwhen users’ activities and locations changed,
such as 9:00 and 10:00 in the morning and 19:00 and 20:00. At 9:00 and 10:00, the pri-
mary activity transitions are ‘work’ to ‘work’, ‘home’ to ‘work’, and ‘other’ to ‘work’ (see
Figure 7), so ‘work’ is a dominant activity. The activity preference for ‘work’ plays a vital
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Figure 12. Prediction accuracy of five groups of users in three scenarios.

role in next location prediction because it gives higher probabilities to grid cells where
‘work’ took place before. Similarly, at 19:00 and 20:00, users’ activities shifted from ‘work’
and ‘other’ to ‘home’, and ‘home’ was a dominant activity. For ‘active family person’ and
‘part-timeworker’, the decrease in prediction accuracy is apparent when γ is 0 because the
frequencies of ‘other’ activities are relatively high in the daytime, and the activity transitions
are diverse. Thus, the improvement in prediction accuracy mainly depends on travel dis-
tance preferences. With the help of activity and travel distance preferences extracted from
users with similar daily activity patterns, the prediction model can capture hidden location
preferences, and the prediction accuracy can be improved.

6. Conclusions

In this paper, we proposed a human mobility prediction model by combining individual
travel behaviour with the location preferences of users who share similar daily activity pat-
terns. First, users were clustered into groups with distinct daily activity patterns. Second,
each group’s collective location preferences (i.e. activity and travel distance preferences)
were extracted. Then, the user’s travel behaviour and collective location preferences were
integrated to predict their next location. A mobile phone positioning dataset of users in
Shanghai, China, was used to validate the proposedmodel. The results showed the follow-
ing conclusions. (1) The prediction accuracy concerning a user’s next locations is closely
related to their daily activity pattern. For example, the location prediction accuracy of a
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‘family person’ is much higher than that of users in other groups. (2) The proposed model
achieves a prediction accuracy of over 80% during most of the day. There is a maximum
increase of 16% in the prediction accuracy compared with the three baselinemodels when
users’ mobility is highly active, demonstrating the effectiveness of the proposedmodel. (3)
The importanceof individual travel behaviour, collective activity preferences, and collective
travel distance preferences varies at different times of the day. Ourmodel can contribute to
a more in-depth understanding of the relationship between a user’s travel behaviour and
collective location preferences in next location prediction.

The proposed model experiment was based on a 5-day mobile phone positioning
dataset. Although users continued to explore new locations on other days, our study
showed that severalmajor daily activity patterns canbe captured evenwith a 5-daydataset,
especially given that we only focused on the patterns of ‘home’, ‘work’, and ‘other’ activi-
ties. In addition, ourmodel showedgoodperformance based only on a 5-daymobile phone
positioning dataset. We believe a longer dataset may be even more helpful.

We plan to improve our model in several directions. First, in our current work, only
‘home’, ‘work’, and ‘other’ activities were considered in user clustering and collective activ-
ity preference extraction owing to the inadequate spatio-temporal resolution of mobile
phonepositioningdata. If higher spatio-temporal resolutiondata are available in the future,
we can use more contextual information such as POI and land use, to differentiate various
types of ‘other’ activity, such as ‘shopping’ and ‘leisure’, and extend our prediction model.
Second, the proposed model is primarily for mobile phone users with relatively high data
quality (for example, at least 20 position records per day). We believe proposing a model
that can predict locations for a large proportion ofmobile phone users with heterogeneous
data quality is worth researching in the future. Third, we will validate the performance of
the proposed model using datasets from different cities and different sources.
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Appendix 1

Figure 13. Variations in α, β and γ from 1:00 to 24:00 for four groups of users.
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