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A B S T R A C T   

The way people allocate time across home and work activities determines their commuting patterns and frames 
much of the activities they undertake in the urban space. While inter-personal and intra-personal variability and 
repetitiveness in these activities have been documented, they remain largely underexplored. This study high-
lights the variations in and between individual home-work activity patterns by using information from metro 
smart card data as a proxy. To this end, the concept of individual space time usage matrix (STUM) is proposed 
and an analytical framework is developed in support of its use to depict how each rider allocates time in the 
vicinity of metro stations spatially and temporally. With this framework, we can classify space-time activity 
patterns that can be traced back to behavioral variability. By using Wuhan, China as a case study, variability in 
the number of home/work locations in personal activity patterns, and flexibility of work timeframes are 
investigated inter- and intra-personally. Our results show that about 25% of the population has a sophisticated 
home-work activity pattern that does not confirm to the ordinary 1-home 1-workplace pattern. Furthermore, 
even for this latter group, we find quite differentiated home and work timeframe patterns. The STUM is proved to 
be an effective and efficient concept to create a personal profile in analyzing the activity variability with big geo- 
spatial data.   

1. Introduction 

As an essential part of urban daily life, commuting describes the 
travel between one’s residence and the workplace. Substantial varia-
tions are observed among individual commuting behaviors (Kitamura 
and Yamamoto, 2006; Buliung et al., 2008). Such variations can be 
imputed to the number of home or work locations, to changing longi-
tudinal contexts, or to the travel mode or route individuals use (Shen 
et al., 2013). The plasticity exhibited by commuting behaviors mirrors 
the relations between home and work locations, as well as activity 
patterns that people form at these places. That is to say, the way people 
allocate time between home and work determines their commuting 
patterns. However, such behavioral complexities remain to be fully 
apprehended. This article studies forms of variability in individual 

home-work activity patterns, which contributes to the understanding of 
the factors of commuting behavior plasticity. 

Due to urbanization and to the development of information and 
communication technologies, the complexity and variability of indi-
vidual home and work activity patterns have intensified in urban areas 
(Järv et al., 2014; Kwan, 2007). A study using the 2015 China Household 
Finance Survey showed that more than 20% of Chinese urban house-
holds own multiple homes (Huang et al., 2020), while others may have 
co-living arrangements with parents on a routine basis. As a result, some 
people split residence between multiple homes. Some people have a 
single place of work all day and every day, while others may need to 
travel around the city to carry out business or meet clients. Some 
workers may have night work shifts or weekend work requirements, 
showing intra-personal variability in daily commuting; some workers 
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may have a lot of flexibility in their daily work schedule, while others 
may be very regimented, or be frequently called to work overtime (Long 
et al., 2016). Over a longer time horizon, a number of people would 
choose to re-locate their home or work locations to achieve a better 
compatibility (Gao et al., 2018; Huang et al., 2018). The plasticity 
exhibited by the home and work activity patterns is a critical property 
shaping the diversity of commuting behaviors in a population. There-
fore, it is important to understand the contexts that permit people to 
have flexible home/work locations and what resulting variabilities may 
lie in different people’s allocation of time at home and at work. 

Seeking such variability in people’s home-work activity pattern 
behavior, however, is not a trivial task. A major obstacle is the lack of 
fine-grained mobility observations for understanding how individuals 
allocate time at home and work. Although travel behavior surveys can 
capture the home-work activity pattern of participants, sample sizes are 
usually small, and they often cannot reveal behavioral heterogeneity 
across large populations. With the prevalence of location-aware devices 
such as GPS, smart cards, or cell phones in the last decade, large-scale 
mobility datasets have become increasingly available. Rule-based 
methods have been proposed to identify home and work activities 
from mobility tracking data, predicated on simple views on people’s 
space-time behaviors in the urban environment, such as a single fixed 
home place and a single fixed work place, with a trip to work about 7–9 
am and a return home at 5–7 pm. Nevertheless, interpersonal variations 
in home or work activities are largely ignored. In particular, it is still a 
challenge to tie this variability across time and geographies on the basis 
of big geospatial datasets. 

In this paper, we study inter-personal variability in home-work ac-
tivity patterns as well as intra-personal daily variations in work-related 
activities. To achieve this goal, we propose the construct of a space-time 
usage matrix (STUM) to accumulate the decomposed activities into 
uniform spatial and temporal units for each traveler. This construct is 
developed for use with information extracted from metro smart card 
data (SCD) over an extended period of time (3 months in our study) in 
Wuhan, China. The STUM is effective at revealing people’s time use in 
the vicinity of each metro station. Thus, it is possible to identify all 
potential home or work locations, along with highly recurring activity 
schedules and flexible activity schedules during a set study period. We 
find that about a quarter of all transit riders have a home-work activity 
pattern that departs from an ordinary 1 home-place 1 work-place 
pattern. Furthermore, transit riders have quite differentiated work 
schedule patterns, even if their home-work activity pattern fits the or-
dinary 1 home-place 1 work-place variety. 

It is worth pointing out that this study uses home and work stations 
as proxies for the actual home and work locations of transit riders 
because of data limitation. Also, the privacy of each traveler is well 
protected since all card IDs have been anonymized. The main contri-
butions of this paper are as follows:  

• We propose and describe the STUM, which is an analytic concept to 
study an individual traveler’s intensity of usage of the urban space 
spatially and temporally with appropriate aggregation and decom-
position strategies. This process is effective and efficient at creating a 
personal portrait of activities with big geo-spatial data. 

• We study the inter- and intra-personal variability of home-work ac-
tivity patterns with respect to the potential multiplicity of home and/ 
or work locations, and to the flexibility of work schedules. Thus, the 
analysis reveals the richness and diversity of commuting behaviors in 
urban life. 

The rest of the paper is organized as follows: Section 2 reviews recent 
studies on activity and travel behavior patterns from smart card data; 
Section 3 presents a new analytical framework, which includes the 
principles of STUM, how to implement it on a specific case study and 
how to derive home-work activity patterns from it; Section 4 develops 
the case study of home-work activity patterns in Wuhan, China; Section 

5 discusses the results of the empirical analysis; and Section 6 draws the 
conclusions of our study and points to future work in this line of 
research. 

2. Literature review 

In recent years, many studies have been undertaken to understand 
transit users’ travel habits from smart cards data, which contain detail 
records of every instance when people board or alight the public 
transport system. The temporal variation of swiping in or out helps to 
compile the ridership statistics (Tu et al., 2018), replicate dynamic 
travel demand and simulate operational conditions of the transit system 
(Liu et al., 2018), predict individual mobility (Zhao et al., 2018), and so 
on. The spatial interaction between stations across the urban space re-
veals the dynamic flows that shape the internal structure of the urban 
region (Roth et al., 2011), public activity centers (Cats et al., 2015), and 
urban functionality at the station level (Zhou et al., 2017). The study of 
variability in temporal regularities between cities (Zhong et al., 2016), 
as well as shifts in temporal habits across years (Briand et al., 2017) also 
provide valuable insights into how human travel patterns change in 
systematic ways across different spatial and temporal scales. 

Commuting behavior in public transportation systems is both 
“repetitious” and “variable” (Hanson and Huff, 1988). It has observed 
that variability in the use of public transport happens between in-
dividuals (inter-personal variations), but also within individuals over 
time (intra-personal variations). On the one hand, it is believed that 
inter-personal variations in travel patterns are the external expression of 
the intrinsic socio-demographic characteristics of the rider. Whereas the 
smart card data record passengers’ activity over time, they enable the 
partitioning or grouping of passengers according to their temporal 
similarity in patterns of check-in and check-out (Faroqi et al., 2018; El 
Mahrsi et al., 2017), or to focus on certain types of extreme transit riders 
based on specific rules (Long et al., 2016). Moreover, there is a rising 
interest in studying the relationship between the transit behavior of 
passengers and their socio-economic attributes. For instance, El Mahrsi 
et al. (2017) discovered clusters of passengers who have similar tem-
poral boarding times and studied how socio-economic attributes can 
affect travel patterns based on their local residences. Along this line, Liu 
and Cheng (2018) extracted transit patterns by using a text mining 
technology and enhanced the interpretation jointly with open geo-
demographics derived from census data. Goulet-Langlois et al. (2016) 
studied passenger heterogeneity by identifying clusters from activity 
sequences spanning multiple weeks. 

On the other hand, intra-personal activity behavior is driven by 
associated needs and desires of individuals, and governed by a set of 
constraints, which are typically examined with time-space prisms from a 
time geographic perspective (Hägerstrand, 1970; Kitamura and Yama-
moto, 2006; Zhang and Thill, 2017). The time-consuming process of 
creating time-space prism makes it hard to handle a big dataset with 
millions of individuals. Research has concentrated on the non-spatial 
outcomes of travel behavior, like the frequency of boarding in SCD 
(Deschaintres et al., 2019). Other efforts have been made to analyze the 
human activity space variability by using mobile phone data (Järv et al., 
2014; Xu et al., 2016). For the purpose of investigating variability in 
commuting behaviors, Huang et al. (2018) tracked the home and work 
location changes in four mobility groups with the help of a 7-year metro 
SCD. With these rather limited research developments, it is clear that 
further study on the variability of individual commuting behavior from 
day to day, or week to week with big geospatial data is needed. A 
possible reason for the dearth of research in this area is that only loca-
tions are recorded in these GPS tracking or smart card tracking datasets, 
rather than a full suite of activity attributes (e.g., activity type, duration, 
etc.), which curtails the ability to identify variability from the activity 
perspective. 

With most SCD datasets, trip purposes and personal information are 
unavailable. Therefore, researchers resort to various approaches to infer 
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home and work activities from limited data at the first step of their 
analysis. Ma et al. (2017) adopted several criteria including travel days, 
departure time, number of stops visited, and home/work route fre-
quencies, by using a rough set clustering method to differentiate com-
muters from non-commuters. Other studies have identified the home or 
workplace station from SCD by some predefined rule-based method. For 
example, Long and Thill (2015) started with one-day data to identify the 
daily home stop to be the departure bus stop of the first trip, and then 
identified the final home location as the largest spatial cluster of daily 
home stops over one week. Similarly, Zhou et al. (2014) identified the 
workplace and home places based on activity duration rules that the 
duration should be more than 6 h. Liu and Cheng (2018) identified the 
residential station to be the most frequently visited first boarding station 
of frequent passengers. However, as Wang et al. (2017) pointed out, a 
drawback of the rule-based method is that it is hard to correctly handle 
commuters who have multiple home/workplace stations or have flexible 
or irregular work hours. Moreover, thresholds may be hard to decide 
upon without the support of travel survey data, considering the diver-
gence of travel behavior between cities. A uniform rule that does not 
consider personal variations is likely to overlook diverse and flexible 
individual patterns. 

Several other studies combine spatio-temporal movement patterns 
with surrounding land use or Points of Interest (POIs), aiming at infer-
ring trip purposes from SCD with a probabilistic rule-based model or a 
decision tree (Alsger et al., 2018; Lee and Hickman, 2014). However, 
multi-home, multi-employment or work shift patterns are not fully dis-
cussed in those studies. Hence, the potential of SCD for understanding 
commuting patterns effectively and efficiently at the personal level is 
still challenging and has not yet to be fully exploited. 

3. Methodology 

Fig. 1 shows the methodological framework for home-work activity 
pattern classification. The logical flowchart consists of five steps. In the 
data processing step, activities are generated from the SCD after data 
cleaning. For our purposes, an activity entails the traveler’s physical 
presence over the time interval between two consecutive trips, on con-
dition that the alighting station of the previous trip is the same as the 
boarding station of the next trip, following in this respect the approaches 
in Chakirov and Erath (2012) and Zhou et al. (2017). Then, we create a 
daily STUM for each rider from all their activities. In the third step, each 
station in STUM is labeled by considering the usage intensity 

Fig. 1. Flowchart of the complete methodology.  
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information in specific hours of the day. The STUM is then reshaped to a 
standardized matrix dubbed the STUM-HW so the matrix profile of each 
rider has the same structure. Next, we analyze the time sequence of 
usage intensity patterns for each station in the STUM to get the time 
allocation features including total usage intensity, effective activity 
time, and so on. In the fifth step, the exact features of each STUM-HW 
are input as a vector to train a random forest model for the purpose of 
classifying and predicting home-work activity patterns for all riders. 

3.1. Space time usage matrix 

The usage of a place by a traveler can be measured by how frequently 
and how long he/she conducts activities at that place. For each traveler, 
we create a profile that documents the spatio-temporal usage patterns of 
each metro station. We incorporate all workday activities in our various 
spatio-temporal measurements. 

We derive a traveler’s profile by constructing their STUM. The STUM 
is designed as a matrix (eq. (1)) with each column standing for a spatial 
unit, namely a station s and its surrounding in our research, s ∈ (sj, j = 1, 
…,m), where m is the number of metro stations, and each row is a 
temporal unit t, t ∈ (ti, i = 1,…,n), where n is the number of time slots of 
uniform span ∆t in a day. Accordingly, the value uij in the matrix Uc 
speaks for the usage intensity in the vicinity of station sj at time slot ti by 
transit rider c. 

Uc =

⎡

⎢
⎢
⎣

u11 … u1j … u1m
…

ui1 … uij … uim…
un1 … unj … unm

⎤

⎥
⎥
⎦ =

(
uij
)
∈ ℝn×m (1) 

To specify matrix Uc, we take a strategy of temporal decomposition 
of recorded activities that works as follows. If an activity a = (ts, te, s) is 
detected for a traveler at station s with a start time ts and an end time te, 
then it can be decomposed into a binary vector of fixed length, as shown 
in eq. (2): 

a(s) = [x1,…, xt,….,xn] (2)  

with xt =

{
1, ts ≤ t ≤ te
0, otherwise , if te ≥ ts and xt =

{
1, t1 ≤ t ≤ ts, te ≤ t ≤ tn

0, otherwise , 

if te < ts. 
A value of 1 means the traveler is using or staying around s1 during 

that time slot. An example is shown in Fig. 2. In the decomposition, the 
condition te < ts happens when the activity starts after noon and ends 
before noon of the following day. Overwhelmingly, activities meeting 
this condition would involve staying home. Occasionally, however, the 
activity could be work, which would be the case of someone working on 
a night shift. However, because our framework is designed under the 
assumption that no travel behavior survey data are available to sup-
plement SCD, it is appropriate to state that staying home is the activity 
associated with condition te < ts. 

Through the decomposition process, the activity at any station sj is 

represented as a usage sequence vector of time. The activity duration is 
obtained by simple algebraic aggregation as 

∑
t=1
n xt∆t. The decomposi-

tion a(s) in eq. (2) preserves the relevant information on the activity 
while offering great flexible for mathematical operations. Since all the 
activities of a transit rider over a certain study period are represented by 
a vector of the same length, activities that occur in the vicinity of the 
same station over this period can be summed up to derive this rider’s 
usage intensity of this station. In eq. (3), A(sj) is introduced to represent 
the accumulated usage sequences of the same person around station sj. 

A
(
sj
)
=

∑

s=sj

a(s) (3) 

Hence, the STUM Uc comprises the stack of A(sj) at all m stations, 
given as eq. (4): 

Uc =

⎡

⎢
⎢
⎣

u11 … u1j … u1m
…

ui1 … uij … uim…
un1 … unj … unm

⎤

⎥
⎥
⎦ =

[
A(s1) ,…,A

(
sj
)
,…,A(sm)

]
(4) 

To make it possible to compare the STUMs across different travelers, 
we standardize Uc to Uc

′ using eq. (5): 

U′

c =
(

u
′

ij

)
∈ ℝn×m,

with u′

ij =
uij

∑

1≤i≤n
1≤j≤m

uij
(5) 

Each normalized value uij
′ in Uc

′ denotes the relative usage intensity 
of a person, which shall be in the [0,1] range. A higher uij

′ indicates that 
the cardholder stays more frequently around station sj in the time slot ti. 

Certain portions of the entire space-time domain may be of interest. 
Let TP = [t: t′] represent a time span from t to t′, while S represents a set 
of stations. Then U′[TP,S] is a subset of Uc

′ that only depicts the usage 
intensity in the vicinity of targeted stations during the specified time 
range. If we wish to know the aggregate usage intensity ui(U′[TP,S]) 
around the set of stations S during TP, it is straightforward to add up the 
values in Uc

′ that satisfy sj ∈ S and TP = [t: t′], as shown in eq. (6): 

ui(U′

[TP, S] ) =
∑

t≤i≤t′
sj∈S

u′

ij. (6) 

Based on activities derived from complete records of smart card 
swipes, the STUM is computed from the spatio-temporal decomposition 
of activities and their accumulation with consistent dimensionality n*m. 
Thanks to this framework, repetitive or regular activities like staying 
home or working would show higher usage intensity than occasional 
and discretionary activities, like shopping or recreation. Furthermore, 
when one type of activity occurs in the vicinity of multiple stations (for 
example people having multiple workplaces), it is very convenient to 
study the entirety of typical activities with eq. (6). The distinctive 

Fig. 2. Illustrative example of STUM when n = 12.  
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advantage of STUM over a simple check-in and check-out frequency 
profile is to embed information on the start time, end time, activity 
duration, and the frequency of activities. 

The temporal unit used in the STUM ought to be thoughtfully 
selected because it controls how and at what level of temporal gran-
ularity activities can be decomposed or aggregated. If we choose 0.5 h 
as time unit, then each activity will be decomposed by 30-min segment 
using eq. (2), which will allow to extract activities from the SCD that 
would pass unnoticed with a longer time slot. On the other hand, if we 
choose a week as a time unit, then all activities in a week will be 
aggregated using eq. (3) and fine-grain detail of the individual’s 
space-time activity pattern will be smoothed out. In the following 
study, we first divide a day into 48 time windows (i.e., n = 48) 
numbered from t1 to t48, with each time slot standing for a ∆t = 0.5h 
increment. So, we create a daily individual STUM Uc

′ with a dimension 
of 48*m to help identify the stations associated with home, work and 
other types of activities. The daily STUM can be scaled up to a coarser 
STUM, like a weekly STUM, where the temporal scale is broadened by 
choosing a week as a time unit. This approach will be used in Section 
5.2 to study the longer term (week to week) intra-personal change in 
multiple home locations that features on the space-time activity 
pattern. 

3.2. Home-work activity characteristics 

3.2.1. Labeling home and work stations in STUM 
In this section, we construct daily STUMs with n = 48 to label po-

tential home and work locations on each rider’s time allocation pattern. 
A daily STUM is consistent with the day-to-day repetitiveness of many 
elements of travel behavior. It is customary that the home activity 
happens at night while the work activity happens during the daytime 
and our labeling will be consistent with these tendencies. The following 
timeframes are used: daytime is from 9 am to 5 pm, nighttime from 9 pm 
to 6 am, while the remaining hours are treated as “other times”. Hence, 
we use the following terminology: 

DT = [t19: t34] for daytime, 
NT = [t43: t48, t1: t12] for nighttime, 

OT = [t13: t18, t35: t42] for “other times”, 
ALL = [t1: t48] for all time slots. 

By summing up the usage frequencies in each time slot via eq. (6), for 
each card holder we can calculate ui(U′[DT, sj]), ui(U′[NT, sj]), and ui(U′

[OT, sj]) at each station sj. Stations with zero usage intensity in all three 
timeframes are labeled ‘NA’ to indicate they are not used by this card 
holder. Then, we label each of the other stations sj as a potential location 
for home, work, or other type, according to the highest frequencies 
among ui(U′[DT, sj]), ui(U′[NT, sj]), and ui(U′[OT, sj]). We are aware 
that activities other than work, like shopping or recreation, may also 
happen during DT. In order to learn the most probable activities from 
frequency and duration features, we will study the time sequence of ui at 
each station by introducing several indices in a subsequent stage of the 
process. It should be clarified that the three timeframes are not used as 
strict rules to label any single activity, but to help identify the dominant 
activities around each station. 

Once stations have been assigned a label (i.e., home, work, or other 
type), we select the top-ranking stations in each label group by ui(U′

[ALL, sj]). For the purpose of this study, we keep the top 3 stations of the 
home group to be (h1,h2,h3), the top 3 stations of work group to be (w1, 
w2, w3), and the top station of the other type group to be (ot1). In other 
words, the STUM is truncated and resized to seven columns with column 
names h1, h2, h3, w1, w2, w3, ot1, as illustrated in Fig. 3(a). Here we 
choose the top 3 stations, considering that the fraction of people with 
more than 3 homes or workplaces would be quite low according to 
surveys in Cheng et al. (2020), and that the data show that the usage 
intensity at the fourth station is quite low, if not null. Each person is 
treated independently to identify his/her stational functions in STUM. 
The resulting subset matrix that focuses mainly on potential home and 
work stations is named the STUM-HW matrix. By repeating these steps 
for each traveler, a full set of individual STUM-HW matrices is 
generated. 

3.2.2. Usage intensity characteristics 
So far, we have identified a list of possible home and workplace 

stations and arranged them in order of the usage intensity in each rider’s 
STUM-HW. The start time, end time as well as the duration of the 

Fig. 3. Example of time sequence segmentation at h1 and w1.  
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activity at each station also matter to study how people use the station. 
Thus, it is important to study the time sequence of the usage intensity 
around each station, which is a vector of U′[ALL, sj] in each column in 
STUM-HW. For example, the STUM-HW in Fig. 3(a) shows a traveler’s 
activity pattern at h1 and w1; the corresponding time sequences of the 
usage intensity depicted in Fig. 3(b) and (c), respectively. 

Since U′[ALL, sj] is calculated from the accumulation of all decom-
posed activities, it is necessary to segment the time series based on usage 
intensity and find the discrete time slots that delineate significant ac-
tivities (green dashed line in Fig. 3). The significant activities are asso-
ciated with sub-segments of high usage intensity. We use a simplified 
version of the changing point detection algorithm proposed in Lavielle 
(2005) to cut the usage intensity sequence into effective sub-segments, 
with parameters lmin (the minimum length of a sub-segment) and α 
(the lagged difference). The process is as follows: 

Step 1: Find all changing points k (1 ≤ k ≤ n) in the original series 
that satisfy u′

k, j – u′
k− 2, j > = α, cut the original time series into k + 1 

sub-segments, and calculate the mean intensity value x.mu and segment 
length x.sl for each sub-segment x. 

Step 2: if x.sl < lmin, merge the current segment x to the prior one or 
to the post segment, whichever has the smaller difference to x.mu. Loop 
until all segment lengths are longer than lmin. 

After detecting all sub-segments of stational time series U′[ALL, sj], 
we filter those effective activities considering the x.mu account for the 
maximum ui value max(x.mu) of all sub-segments. If x.mu /max(x.mu) ≥
β, then sub-segment x is considered an effective activity. As an example, 
there are 3 effective activities, marked 1, 3, and 5, for case featured in 
Fig. 3(b). The total effective activity duration can be calculated from all 
effective sub-segments as: 

atl
(
U′[ALL, sj

] )
=

∑
x.sl × ∆t, if x is effective. (7) 

In addition, we use the usage intensity as a weight to calculate the 
weighted mean activity time: 

wat
(
U′[ALL, sj

] )
=

∑ x.mu*x.sl
max(x.mu)

×∆t, if x is effective. (8) 

This is particularly meaningful for the work station series, as this 

Fig. 4. Map of Wuhan’s metro system in 2016.  
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approach permits us to get the work start time workstart as the start time 
of the first effective segments and the work end time workend as the end 
time of the last effective segments. 

So far, the proposed analytical framework has led to propose several 
indices to depict ui characteristics at each station. This information is 
then used to classify the home-work patterns into different groups and 
study the work time flexibility in the next step. 

3.3. Home-work activity patterns classification 

After depicting the space-time behavioral patterns embedded in the 
columns of the STUM-HW using ui, atl, and wat (eqs. (6)–(8)), we study 
the interpersonal variability in home-work activity patterns that metro 
users exhibit. To this end, we classify card holders by a number of 
measures of their space-time behavioral patterns. We choose the random 
forest (RF) algorithm for this purpose because it is known to reduce the 
chance of overfitting to training data. An RF consists of many decision 
trees and assures the diversification and low correlation across trees by 
taking a bagging strategy as well as by using feature randomness when 
building each individual tree. The important parameters in a random 
forest are the number of trees to grow (ntree) and the number of vari-
ables randomly sampled as candidates at each split (mtry). Increasing the 
mtry, or ntree parameters will improve the performance of the model, 
while also increasing the computational time. 

In general, we will have a STUM-HW of 48*7 dimensions for each 
card holder. For every column (station sj) in the matrix, we will calculate 
the stational usage intensity ui(U′[ALL, sj]) and the effective activity 
duration atl(U′[ALL, sj]). Plus, we get the work start time workstart, and 

the work end time workend from aggregated time series of work locations 
U′[ALL, sj ∈ (w1,w2,w3)] as well as the weighted mean activity time wat. 
Thus, for each card holder, we have 17 features as an input to feed the RF 
to classify home-work activities patterns. 

4. Case study 

4.1. Dataset 

In this study, we use metro SCD over three months 
(2016.08–2016.10, including 62 workdays) collected in Wuhan, China. 
There were 4 metro lines operating in Wuhan in 2016, and they included 
a total of 96 stations, as shown in Fig. 4. Wuhan’s metro system was 
designed so that stations are spaced in the urban fabric with a catchment 
area of 500–600 m, in the majority of cases. Some stations, like line 
endpoints, may have a wider catchment area of 1000 m or more. 

The original SCD record tracks each traveler’s cardID, stationID 
where a transaction was made, the type of transaction (check-in or 
check-out), and the time of the transaction. In Table 1, we provide tallies 
on the SCD data during workdays (Monday through Friday, excluding 
holidays). During the 3-month period, there are about 89 million trips 
reconstructed from the two successive check-in (boarding) and check- 
out (alighting) records by same cardID after data cleaning. Activities 
are then identified between two consecutive rides following the 

Fig. 5. The log-log plot of the activity count of transit riders.  

Table 1 
Description of the metro SCD.  

Month Transactions Reconstructed 
trips 

Activities Number of 
cardID 

2016.08 (23 
workdays) 

64,905,143 31,549,032 12,982,471 2,738,291 

2016.09 (21 
workdays) 

63,522,933 30,863,748 13,454,683 2,791,085 

2016.10 (18 
workdays) 

53,907,173 26,245,030 11,560,056 2,505,399 

TOTAL 182,335,249 88,657,810 37,997,210 5,059,822  

Table 2 
Classification results of the RF model.  

Classes Description Training 
dataset 

Testing 
dataset 

Forecasting 
results 

C1 1 home station & 1 work 
station 

101 49 119,252 

C2 1 home station & 
multiple work stations 

49 22 20,325 

C3 Multiple home stations & 
1 work station 

25 12 9865 

C4 Multiple home stations & 
multiple work stations 

29 10 3800 

C5 Home station & other 
type activity station 

24 21 5051 

C6 Outliers 12 6 1511 
Total – 240 120 159,804  
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approach in Chakirov and Erath (2012) and Zhou et al. (2017). We 
generate nearly 38 million activities performed by 5 million unique card 
holders. As a first step, we filter out infrequent travelers to focus on 
travelers whose commuting trips can be retrieved. The log-log plot of 
weekday activity counts of each person (Fig. 5) shows that the empirical 
distribution of activity counts is well fitted by two truncated power law 
distributions. The inflection of the plot is between [55, 70]; accordingly, 

we choose 55 as the minimum number of weekday activities that should 
be recorded in the dataset for a transit rider to be regarded a frequent 
traveler. By this definition, we have about 12.8 million activities by 
160,164 frequent travelers on workdays. That is to say, we selected 3.2% 
of travelers to be frequent commuters, accounting for 33.8% of total 
recorded activities. These activities are used to create individual STUMs 
in the following study. 

Fig. 6. STUM examples in various classes.  
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4.2. Home-work activity pattern classification 

Following a sensibility analysis, we select α = 0.002 and lmin = 3 as 
parameters in the changing point detection algorithm to cut the time 
sequence of usage intensity into sub-segments. If α is too high, the 
changing point at a gentle slope would not be detected, which would 
affect people who have flexible home/work departure or arrival times. 
lmin = 3 makes sure that the actual activity lasts at least 1.5 h; a high 
lmin would mistakenly merge short sub-segments. The atl value in eq. (7) 
would be affected more than the wat in eq. (8) by these parameters, 
because the latter takes the usage intensity as weight when calculating 
the activity time length. Also, we set β = 1/3 to filter effective sub- 
segments; this constrains the ui of an effective activity to be at least 
one-third of the highest ui. 

We trained the RF classification model over a range of class numbers 
and settled for a solution with six classes as it is readily interpretable in 
terms of mobility behaviors. The statistical description of each class in 
the RF model is provided in Table 2. The training set consists of a 
random sample of 240 riders and the testing set contains 120 riders; the 
remaining 159,804 travelers (160,164–240–120) are used for classifi-
cation forecasting. In the RF model, the feature of the usage intensity of 
station h3 and w3 contributes to class prediction in the order of 2.8% and 
8.8%, respectively, and the effective activity time length atl in eq. (7) of 

station h3 and w3 contributes to the model by 0.7% and 3.5%, respec-
tively. This evidence suggests that omitting the third potential station of 
home and work may lead to missing on some non-trivial information on 
activities. The unweighted Kappa statistic measures agreement for cat-
egorical data, which is calculated from the confusion matrix on the 
testing data with the caret package in R (Kuhn, 2008). The value of 
0.8057 is strong indication that the model is good for forecasting 
classification. 

Representative cases of STUM-HWs in each class are displayed in 
Fig. 6. People belonging to C1 have ordinary mobility patterns that 
encompass a single home location and a single work location. They 
constitute the vast majority of the whole dataset (74.5%). However, 
this does not mean they all lead the same life. For example, persons A, 
B, C featured in Fig. 6 show different working schedules. People like 
C1-A and C1-B have rather fixed working times, but they differ by the 
times of return home for lunch or dinner. Person B is found to work 
from 9 am to 6 pm, while person A works extra time from t38 to t43, 
after dinner. Deeper differences can be detected in the activity 
behavior of card holder C1-C. This individual’s STUM-HW shows a 
much higher usage intensity during t26 ~ t33 than in other time slots 
in w1. When tracing back to the original SCD records, we find that this 
card holder has two regular work times on different days of the week. 
One schedule is 8:30 am ~ 4:30 pm, while the other is 1:00 pm ~ 9:00 
pm, which would be consistent with working on different shifts at the 
same location. These two work schedules overlap during t26 ~ t33, 
hence the higher usage intensity during this timeframe. Intra-personal 
variability in activity schedules of this sort is further discussed in 
Section 5.3. 

In Fig. 6, person D and person E both belong to class C2 whose main 
property is that mobility patterns include multiple work locations. 
Person D tends to have fixed work times at both places of work. In 
contrast, person E goes to one workplace in the morning and travel to 
another workplace in the afternoon. As the survey in Shen et al. (2013) 
showed, people with alternative workplaces may be business people 
who have branch companies, or need to go out to meet business part-
ners, or may routinely work out of an office, like salespersons. Moreover, 
person F in C3 has multiple home locations, while person G in C4 has 
both multiple home and work locations. Person H in C5 does not show 
any typical work locations, possibly as an unemployed or retired indi-
vidual, but he/she spends short times at ot type stations with high reg-
ularity. Person I in C6 would be a typical outlier, whose home-work 
patterns defy interpretation. 

As the results of the RF model in Table 2 and Fig. 7 indicate, 

Fig. 7. RF class frequencies.  

Fig. 8. Histograms of distance between (a) multiple home stations; (b) multiple work stations; (c) home station to ot type station (bin width = 1 km).  
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commuters with a single home and a single work location (class C1) 
account for 74.5% of all card holders. In addition, 15.1% of riders (C2 +
C4) exhibit multiple workplaces, and 8.6% of riders (C3 + C4) exhibit 
multiple home locations. A recent household survey showed that more 
than 15% of Wuhan households own multiple homes in the same city 
(Huang et al., 2020, p. 6 in Fig. 1). Our own result is lower than this rate 
because we just focus on metro transit riders, who include a higher 
percentage of people from lower and middle socioeconomic classes, 
whose real estate ownership is more limited. Another reason that may 
explain this difference is that here our instances with multiple homes 
stand for homes that are in fact in use as dwellings, instead of property 
ownership in the study by Huang et al. (2020). 

Finally, 3.2% of riders (C5) show home to other activity patterns; 
they stay home most of the time but have regular and brief activities 
away from home. About a quarter of the population have a sophisticated 

home-work activity pattern that is beyond the ordinary 1 home-1 
workplace pattern. Furthermore, even people who fit the latter case, 
have quite differentiated work timeframe patterns. 

From the above results, it is striking that, with the help of the STUM 
construct and the proposed analytic framework, we are able to draw 
such a clear and detailed picture of how people allocate time at a fine 
temporal granularity across home and work activities. Meanwhile, 
questions arise as to how individuals maintain their specific kind of 
home-work activity patterns. For example, how do people who have 
multiple home locations arrange switches between these home loca-
tions? Do they keep hopping between multiple residences across the 
study period? How many people have flexible work schedules? We are 
going to discuss these spatial (home locations) and temporal (work 
times) aspects derived from the analysis of the STUM in the next 
section. 

Fig. 9. Geographic interactions (brown and red arrows) between h1 and h2 for travelers with multiple home stations when (a) dis(h1, h2) ≤2 km; (b) 2 km < dis(h1, 
h2) ≤10 km; (c) dis(h1, h2) > 10 km. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Analysis and discussion 

5.1. Geographical distribution of activity locations 

For people who maintain multiple home stations (classes C3 and C4), 
we first examine how far these home stations are located from each 
other. Fig. 8(a) is a histogram of the distance between the two most 
frequent home stations, i.e., dis(h1,h2), for people in C3 or C4. In this 
group, 34.4% of distances between home stations h2 and h1 are under 2 
km, which is approximately the average distance between two neigh-
borhood metro stations in Wuhan. This suggests that these people may 
in fact live some distance away between the two stations and rely on 
either of these stations in their commuting travel dependent of other 
circumstances of their travel behaviors, such as the conduct of some 
other activities in proximity of one or the station. As shown in Fig. 9(a), a 

dozen pairs of stations are concerned by these switching behaviors be-
tween substitute stations, and most of these pairs involve one station 
that is in the vicinity of a large business district (see also Fig. 4). 

A large share of card holders (43.2%) have home stations 2 to 10 km 
apart (Fig. 8(a)). A few pairs of substitute stations can still be found, like 
north of the city center and in the southeastern section of the city (Fig. 9 
(b)). Given the greater geographic separation between h1 and h2 home 
stations, it is quite probable that many card holders in this group in fact 
have multiple home bases. In the context of living experiences in a major 
Chinese city, it is not unusual for a worker to own, lease, or occupy more 
than one housing unit as a facet of a personal investment strategy, or as a 
co-housing arrangement with close family, or a transitional stage before 
permanent relocation (Huang and Yi, 2011). This is further discussed in 
Section 5.2. These trends carry over to card holders with home stations 
more than 10 km apart (22.4%). This is particularly prominent in the 

Fig. 10. The 50 strongest geographic interactions between (a) w1 to w2; (b) h1 to ot1.  

Fig. 11. Three typical weekly STUMs of travelers with multiple home locations.  
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southeastern section of the city around the Guanggu station where many 
high-tech companies have attracted young people and where the hous-
ing market has been very vibrant (Fig. 9(c)). 

For card holders with multiple work stations (class C2 or C4), we find 
a rather different distance distribution as for multiple home stations 
(Fig. 8(b)). The histogram of dis(w1, w2) (Fig. 8(b)) displays a distinctive 
crater shape and there are several secondary peaks between 2 and 10 
km. This implies that, unlike the situation where many people rely on 
two neighboring stations for home, people do not usually rely on two 
nearby stations to reach their place of work. Fig. 10(a) visualizes the 50 
strongest geographical interactions between w1 and w2. These are true 
instances of riders working at more than one location inside the city 
limits. The w1 to w2 interactions mainly happen between the five 
commercial and central business districts (CBD) of Wuhan. 

Furthermore, we explore the geographic interactions between h1 and 
ot1 for people in class C5. On average, these people stay at ot1 locations 
1 h around 7:30 am to 8:30 am, a short while just before the typical start 
of the workday. The geographic interactions from h1 to ot1 in Fig. 10(b) 
show a clear tendency for traveling from peripheral neighborhoods of 
the city. In line with this, we find that 77.7% of riders in class C5 travel 
to the ot1 location from home within 9 km (Fig. 8(c)). This class is very 
likely formed of parents taking their time just before rush hour to take 
their children to school, after which they return home or hang out at 
other ancillary places nearby. This kind of pick-up/drop-off activity al-
ways shows a high degree of spatial repetition (Buliung et al., 2008), 
which can thus be detected with the STUM. 

5.2. Variabilities in multiple home activities 

To further investigate how people switch between multiple home 
stations, we focus on riders in classes C3 and C4. The time unit is 
adjusted to be 1 week (5 workdays) and we construct a weekly STUM for 
each traveler whose home-work pattern includes multiple homes loca-
tions. Accordingly, we set n = 14 and m = 3, indicating 14 weeks and 3 

home stations in the weekly STUM. Whenever people have a home ac-
tivity at week i, uij = 1 is set in eq. (4). 

Fig. 11 depicts three typical weekly STUMs. They enable us to 
assemble evidence on whether people share multiple homes within the 
same timeframe or transition between homes over the timeframe. Fitting 
the later situation, person J stays at h2 during the first 5 to 6 weeks, and 
then moves on to the h1 station. Similarly, person K stays at h1 and then 
moves to h2 at the 8th week. In contrast, person L hops between three 
different home locations during the study period. By varying the tem-
poral unit in the STUM, it is quite clear we witness a change in home 
location at the weekly scale. Furthermore, we calculate the cosine sim-
ilarity between each traveler’s weekly STUM and the matrix of these 
three typical people to generate a rough classification. As a result, we 
find that among the 13,741 people having multiple home stations, 
40.6% share person J’s pattern, 25.3% are similar to person K, while the 
remaining 33.9% share multiple home stations throughout the study 
period, like person L in Fig. 11. Thus, it can be estimated that about two 
thirds of people show multiple home locations on their activity pattern 
inferred from the SCD due to relocation, but still quite a few people keep 
hopping between their multiple home stations and multiple actual home 
locations for an extended period of time. 

5.3. Work time flexibility 

Finally, we study the plasticity of the work schedule of commuters by 
focusing specifically on typical working individuals who fit in classes C1, 
C2, C3 or C4. We calculate the weighted mean work time wat(U[ALL, 
sjϵ(w1,w2,w3)]) with eq. (8). Work time closely follows a normal dis-
tribution (Fig. 12). Most people work 10–11 h per weekday. Note that 
this work time may include lunch time if people do not travel on the 
metro during the interval. The boxplot shows that the average wat does 
not vary much across clusters, but the wat statistic of people with a single 
workplace (C1 and C3) varies less widely than among people with 
multiple workplaces. Fig. 12 also displays the start work time workstart 

Fig. 12. Distribution of work time of commuters.  
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and end work time workend distribution. 12.3% of regular commuters 
start working before 7 am (t14), while 7.5% of commuters start after 9 
am (t18). On the other hand, 19.7% end before 5 pm (t34), while 27.3% 
of commuters end working after 7 pm (t38). Only 45.2% of people 
follow the common routine that starts between 7–9 am and ends be-
tween 5–7 pm. This leaves about 55% of metro riders having a different 
work time than the standard work timeframe. Hence, it can be seen from 
the daily activity records in SCD that people are behaviorally quite 
diverse and exhibit very flexible work schedules. 

6. Conclusions 

It is a commonly accepted view that people have one home and one 
workplace, and that they go to work at 7–9 am in the morning, while 
tracking back home at 5–7 pm in the afternoon. But does everybody 
really follow that standard routine? At closer inspection of where, when, 
and how long people stay at a place, we can conclude that individuals 
exhibit quite contrasted home-work activity patterns. Some people are 
parents who only travel ahead of rush hours to drop off children at 
school; some are busy traveling during work hours between multiple 
sites; some are hopping between different home bases; and some are 
juggling two work shifts. What a harried and diverse city life! 

We introduced the innovative concept of space time usage matrix to 
measure the accumulation of activities hidden in transit smart card data. 
With the help of the STUM and an analytical framework involving 
spatio-temporal decompositions and aggregations, usage intensity along 
the space-time gradient can be leveraged to identify multiple home or 
work locations as well as the plasticity of people’s time allocation across 
the home and work continuum. The case study in personal mobility in 
Wuhan shows that the STUM is effective at depicting the spatio- 
temporal regularities and variabilities in home, work, and other activ-
ities. Our results show that about 25% of the population have a so-
phisticated home-work activity pattern other than the ordinary 1 home- 
1 workplace pattern. Furthermore, even for this latter group, quite 
differentiated work timeframe patterns exist. Results show that only 
45.2% of people follow the common routine that starts around 7–9 am 
and ends around 5–7 pm in Wuhan. Although we use metro SCD in this 
study, the STUM construct can work with a variety of datasets con-
taining bus records, mobile phone data, and any other datasets that 
record personal travel sequences. The methodology and results will 
contribute to more refined analysis in transport policy, urban planning 
and social studies. 

It is worth pointing out that some bias may exist, since our study 
focuses on frequent commuters using the metro transit system, and 
additional studies would be needed to generalize to the broader resident 
population. The analysis of variabilities for non-recurrent and occa-
sional users should be important to gain valuable insights into the whole 
picture of mobility and activity of city residents. Survey data would be 
instrumental to support the validation of results derived from SCD. 
Moreover, in combination with travel behavior survey data, the method 
could be enhanced to better handle the case of people who stay home 
during daytime and work at nighttime. 

This work can be enhanced in several ways. Firstly, while the concept 
of the STUM and the associate analytical framework are flexible enough 
to be applied at various temporal granularities, at present this is possible 
only when the analyses are done separately. We believe that the inte-
gration of cross-scalar analyses would allow to better conceptualize 
repetition of diverse longitudinal patterns, as well as variability in re-
petitive behaviors. Second, weekend activities would gain to be incor-
porated in the STUM framework to fill the gap in inter-personal and 
intra-personal variability of space-time activities left unanswered by 
the present study. Finally, since big geo-spatial data always lack the 
social-demographic background of individuals, travel survey data would 
supplement the socio-spatial grounding of our results, but help offer 
insights in the relationships between individual socio-demographic 
profiles and activity behaviors. 
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