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Short-Term Forecast of Bicycle Usage in Bike
Sharing Systems: A Spatial-Temporal
Memory Network

Xinyu Li

Abstract— Bike-sharing systems have made notable contribu-
tions to cities by providing green and sustainable mobility service
to users. Over the years, many studies have been conducted to
understand or anticipate the usage of these systems, with the hope
to inform their future developments. One important task is to
accurately predict usage patterns of the systems. Although many
deep learning algorithms have been developed in recent years to
support travel demand forecast, they have mainly been used to
predict traffic volume or speed on roadways. Few studies have
applied them to bike-sharing systems. Moreover, these studies
usually focus on one single dataset or study area. The effectiveness
and robustness of the prediction algorithms are not systematically
evaluated. In this study, we propose a Spatial-Temporal Memory
Network (STMN) to predict short-term usage of bicycles in
bike-sharing systems. The framework employs Convolutional
Long Short-Term Memory models and a feature engineering
technique to capture the spatial-temporal dependencies in his-
torical data for the prediction task. Four testing sites are used
to evaluate the model. These four sites include two station-based
systems (Chicago and New York) and two dockless bike-sharing
systems (Singapore and New Taipei City). By assessing STMN
with several baseline models, we find that STMN achieves the
best overall performance in all the four cities. The model also
achieves superior performance in urban areas with varying levels
of bicycle usage and during peak periods when demand is high.
The findings suggest the reliability of STMN in predicting bicycle
usage for different types of bike-sharing systems.

Index Terms—Bike sharing, deep learning, travel demand,
prediction, shared mobility.
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I. INTRODUCTION

N THE past few decades, with increasing concerns over
global warming and energy consumption, cities around
the world have made notable efforts to promote bike-sharing
systems as a green mobility strategy. Bike-sharing systems
have been widely used by citizens, primarily for short-distance
travels (e.g., facilitating first- and last-mile trips in cities).
Meanwhile, the systems also provide alternatives to other
urban issues, such as greenhouse emissions, traffic congestion,
and human health deterioration [1]—[3]. There are many issues
that hinder efficient operations of bike-sharing systems. For
instance, a spatial mismatch between demand and supply in
bike-sharing systems could lead to bicycles’ unavailability
in certain areas, thus affecting users’ experiences. Hence,
accurately predicting short-term bicycle usage could benefit
operation of the systems (e.g., reblancing of bicycles) [4]-[7].
In recent years, short-term traffic prediction using deep
learning frameworks (Artificial Intelligence) [8] has drawn
much attention with the development of Intelligent Trans-
portation System [9]-[11]. However, the majority of research
focuses on forecasting short-term freeway traffic volumes
or predicting traffic speed on urban roadways. Few stud-
ies have focused on predicting short-term travel demand
for bike-sharing systems [12]-[16]. Moreover, most studies
predict station-based bicycle usage, while limited effort has
been paid to the dockless bike-sharing system (also known as
free-floating bike-sharing system) [14], [15]. With the devel-
opment of Internet of Things (IoT), dockless sharing bikes
can be parked in any proper places by users, which not only
improves the availability of bicycles but also increases service
coverage [17]-[19]. There is no systematic research, however,
that evaluates the performance of prediction algorithms on
both station-based and free-floating bike-sharing systems.
Capturing spatial-temporal dependency is a critical task
for predicting roadway traffic or bicycle usage. Existing
deep learning models have different strategies in modeling
spatial-temporal dependency in the datasets [20]-[29]. These
models have their own strengths and limitations. For example,
Convolution Neural Network (CNN) is widely adopted to
predict traffic speed on urban roadways. Despite its superior
performance in capturing the spatial dependency of roadway
traffic, the framework cannot capture the temporal charac-
teristics of traffic information [28]. Recurrent Neural Net-
work (RNN) and Long Short-Term Memory (LSTM) are also
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employed to predict traffic volume and speed in transport
systems [25], [29]. However, these architectures do not capture
two-dimensional neighbor characteristics. As a result, some
hybrid deep learning frameworks are developed to integrate
convolution and RNN based methods to better capture the
spatial-temporal dependency [23], [24]. There are a limited
number of studies using such hybrid frameworks for predicting
bicycle usage in bike-sharing systems. Moreover, the perfor-
mance of these hybrid frameworks is usually assessed over
one single dataset or study area [14], [16]. The effectiveness
of these models has not been systematically evaluated across
different types of bike-sharing systems.

In this study, we propose a Spatial-Temporal Memory Net-
work (STMN) to predict bicycle usage in both station-based
and free-floating bike-sharing systems. The framework incor-
porates Convolutional Long Short-Term Memory module
(Conv-LSTM) [30] to capture spatial-temporal dependency
in bicycle usage across urban locations. The Conv-LSTM
architecture captures two-dimensional neighbor information
through convolution operators and further encodes such infor-
mation into a recurrent neural network. STMN adopts multiple
Conv-LSTM modules to capture spatial-temporal dependen-
cies from short-term and long-term historical records, and
fuses such information through a feature engineering tech-
nique. We assess the performance of STMN with other
baseline models across four bike-sharing systems. These test-
ing sites include two free-floating systems (Singapore and
New Taipei) and two station-based systems (Chicago and
New York). According to the results, STMN achieves a higher
level of overall accuracy than other baselines models in all four
cities. The proposed framework also shows best performance
in predicting bicycle usage in high-demand urban areas and
during peak periods.

The remaining of this article is organized as follows.
In Section II, we review and discuss related works. We then
give the problem formulation in Section III, and formally
introduce the STMN framework in Section IV. Section V
provides a systematic evaluation of STMN over other baseline
models. Finally, we discuss the implications of the study and
propose future works.

II. RELATED WORK

In this section, we discuss existing methodologies for
short-term traffic forecast. The prediction methodologies can
be classified into three categories: naive models, parametric
models, and non-parametric models [31], [32]. Naive models
are based on statistical assumptions to forecast future traffic
status. For example, Historical Average (HA) [33], [34] adopts
the average value of historical data as prediction results.
Parametric models adopt finite parameters to describe histor-
ical data distribution and then predict future traffic demand.
Autoregressive Integrated Moving Average (ARIMA) with its
variants and Kalman Filtering are typical parametric models.
ARIMA with its variants usually are applied to time-series data
for predicting the future state through regression operations,
including predicting traffic states (e.g., volume, speed, and
travel time), traffic accident, or traffic noise [34]-[44]. The
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mechanism of Kalman Filtering is different from that of
ARIMA. Kalman Filtering is an optimization algorithm to
minimize the residual error between estimations and obser-
vations. Besides predicting traffic states, Kalman Filtering
is also applied in traffic management and control [45]-[50].
All parametric prediction models assume that traffic data are
linear and stationary. However, due to constraints of model
assumptions, amounts of information is filtered by the models.
For example, ARIMA adopts a difference method to create a
stationary sequence. As a result, the prediction performance
of parametric models cannot meet requirements for short-term
predictions.

The third category, the non-parametric model, adopts data-
driven approaches to capture non-linear and non-stationary
process from traffic data. Thus, more training data are required
to obtain sufficient information for accurate predictions.
Recent research has been applied machine-learning and deep
learning approaches in traffic predictions. For instance, support
vector machine (SVM) [51], random forest [52], Bayesian net-
work [53]-[56], Markov model [12]-[15], K-nearest neighbors
method (KNN) [57], [58], neural network model, and hybrid
deep learning approaches.

Among these non-parametric models, deep learning meth-
ods have received increasing attentions in recent years. Several
existing deep learning methods originally used for other tasks
are transferred to predict traffic flow/demand through the
reconstruction of traffic data structures, such as CNN, RNN,
and Stacked Autoencoder (SAE). In [28], the vehicle trajectory
data are transferred into time-space matrix whose row repre-
sents locations of stable sensors ordered by road directions,
and whose column denotes the time order. Meanwhile, adopt-
ing CNN is for extracting near and distant space-time features.
RNN and its variants are employed for traffic prediction,
including Gated Recurrent Unit (GRU) and Long Short Term
Memory (LSTM). GRU is a variant of LSTM, and it reduces
the time complexity of LSTM. Both of them are usually
used to forecast traffic flow, traffic congestion, and traffic
speed [25], [29], [59]. They have also been used to predict
human and vehicle movements [60]-[62]. The drawbacks of
above deep learning models are that the prediction approaches
cannot consider both spatial and temporal dependencies in an
explicit way.

Scholars realize the limitations of traditional deep learning
approaches. Therefore, several hybrid approaches are pro-
posed. In [23], Spatial-Temporal Residual Network (STRN)
is proposed. In this framework, a deep residual network
is adopted to capture spatial and temporal features from
three historical periods, and then these features are merged
by weighted element-wise addition approach to do the final
prediction. Although the residual network regards a time slice
as a channel, temporal correlation is hard to be captured among
channels. Moreover, the weighted element-wise addition can
easily fuse the different features, yet it also mixes information
from different historical periods. Based on the STRN, Ren
et al. adds an LSTM block before the residual network to
capture temporal features. This network uses such a hybrid
structure to capture temporal-spatial features from historical
data [24]. However, the temporal correlation of traffic flow
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is based on spatial information changes. In other words,
the extraction of temporal features should be based on the
spatial information, which is able to capture spatial-temporal
dependency well.

To overcome such drawbacks, Liu et al. employs Convolu-
tional LSTM (Conv-LSTM) to extract each period’s spatial
features by the convolution operator, and then to capture
the dynamic temporal information [63]. Bi-directional LSTM
technology (bi-LSTM) is also adopted to improve prediction
accuracy. Bi-LSTM updates hidden layers from both past
and future states simultaneously, and it is mainly applied
in the field of text forecast based on the mutual relation-
ship between contexts. However, traffic change is one-way
development. In other words, the future traffic flow only
changes according to the laws of historical traffic flow. As a
result, although bi-LSTM can improve model prediction per-
formance, it is hard to be explained in traffic management.
Another framework named FCL-Net adopts two Conv-LSTM
modules for capturing spatial-temporal dependency to pre-
dict taxi passenger demand in Hangzhou, China [64]. These
modules capture high-dimensional spatial-temporal dependen-
cies from two attributes, respectively, including travel time
rate and demand intensity. The dependencies are merged
after dimension reduction by CNN with external factors
for final prediction. In summary, existing deep learning
methods for traffic prediction have resulted into a notable
improvement in prediction accuracy compared to parametric
models or naive models. Meanwhile, these deep learning
frameworks can be further improved to better capture the
spatial-temporal dependency in the datasets to achieve better
performance.

III. PROBLEM FORMULATION

In this section, we introduce terminologies used in the paper
and formulate the prediction problem.

Definition 1 (Grid-Based Data Structure): We divide a city
into a regular w x h grid map based on a particular spatial
resolution. The value of a cell (i, j) in the grid map represents
the cell’s bicycle demand, namely, the number of bicycle
pickups. At the k" time interval, the bicycle demand in the
entire grid map are defined as:

xk(l,l) xk(1,2) xk(l,h)

w2 1) (2, 2) (2, h)
Xew.hy = | | | (1)

@, 1) 3 (@,2) - xp(w, )

Definition 2 (Measurements): We use Original-Destination
(OD) trips as measurements in this case. Typically, OD trips
can be derived from a collection of bike trajectories IP. At the
k' time interval, for a cell (i, j) that lies at the i’ row and
the j* column in the grid map, the sharing bicycle demand
of this cell can be defined as:

Xl j) = > 1 {8ori | ori € (12 J) A gaest & (1. )} (2)
oripelP

where orix : gori — &dest denotes the original-destination
locations at the k'" time slot; gori and gges; denote the spatial
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Fig. 1. The number of bicycle pick-ups in four study sites. (A) Singapore
during 8-9 AM on June 25th 2017; (B) New Taipei City during 6-7 PM
on August 15, 2017; (C) Chicago during 4-5 PM on August 26/, 2019;
(D) New York during 5-6 PM on July 9", 2014.

coordinates of starting and ending locations for a bicycle OD
trip, respectively; gori € (i, j) A gdest ¢ (i, j) denotes that
the OD trip starts from the cell (i, j) but does not end in
the same cell; |-| denotes the cardinality of a set. Particularly,
the number of bicycle pick-ups during one hour in four study
areas are shown in Fig. 1.

Problem 1: Given the historical observations X;_(w, h) =
{Xr(w,h)lk =1,2,...,t — 1}, predict X;(w, h).

IV. SPATIAL-TEMPORAL MEMORY NETWORK
A. Overview of the Proposed Model

In this study, we propose a deep learning model,
Spatial-Temporal Memory Network (STMN), for the
bike-sharing demand forecast. Fig. 2 illustrates the architecture
of STMN. STMN consists of three individual Conv-LSTM
modules and a feature fusion module. Each Conv-LSTM
module is composed of convolution operators and an
LSTM module. Conv-LSTM is used to extract the temporal
dependency based on spatial relationships from a historical
sequence. Next, all spatial-temporal features are fused by
a fusion strategy. Three strategies are evaluated in this
research, namely, weighted element-wise addition (STMN-
WADD), simple concatenation (STMN-CAT), and weighted
concatenation (STMN-WCAT). The weights of features
are learnable parameters during training iterations. Finally,
a two-dimensional convolution module is adopted to reduce
this fusion feature’s dimension such that the dimension is
consistent with that of the input.

B. Convolutional LSTM

Conv-LSTM is the main component of STMN, and it
can capture spatial-temporal dependencies from historical
data. Conv-LSTM is composed of convolution operators and
an LSTM module. The structure of Conv-LSTM is shown
in Fig. 3. To aggregate characteristics of neighbor cells for
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Fig. 2. The architecture of Spatial-Temporal Memory Network. Three independent Conv-LSTM modules, A, B, and C are utilized to capture spatial-temporal

features from corresponding historical periods: Trend, Period and Closeness

. Each Conv-LSTM module contains two stacked layers for extracting deep-level

spatial-temporal correlations. The fusion module is to merge three spatial-temporal features for final forecasting. Then a Conv2D is to reduce the dimension,
and a function T'anh is used to activate a non-linear process. X; and X; denote the prediction result and the ground truth, respectively. The backpropagation

is implemented in loss module to adjust the weights.

Fig. 3. The structure of Conv-LSTM cell.

the central target, Conv-LSTM adopts convolution opera-
tions for replacing vector calculations used in the traditional
LSTM. Moreover, LSTM has several advantages in extract-
ing temporal dependencies compared to RNN. For instance,
the method is able to capture long-term dependency from
historical sequential data based on the gate theory. It can
also address gradient vanishing issue during backpropagation
process.

The input of Conv-LSTM is a spatial-temporal tensor X, =
{Xk(w, h)},, with n denoting the length of historical sequence.

The matrix X (w, h) expresses the spatial information during
the time interval k. w and h represent the width and height
of the study area, respectively. The computations of the
Conv-LSTM can be represented through Eq. (3) to Eq. (8):

Se =0 Wyp s Xp + Wiy s hy—y + Wep o Gy +by) (3)
ir = 0 (Wyi % Xp + Wpi % hg—1 + Wei 0o Ck—1 +bi)  (4)
Cr = tanh(Wye % Xi + Wie % hi_1 + be) 5)
Ck = fioCrot1 +ix o Ci (6)
ok = 0 (Wyo * X + Who * h—1 + Weo 0 Ci + by) (7
hi = oy otanh(Cy) (8)

where X; denotes the input observation at k" time interval
of the Conv-LSTM; fk, i and oy represent the outputs of
forget, input and output gates; Cy represents the updated cell
state; o represents the element-wise product and * denotes
the convolution operation. /; denotes the current hidden state
that incorporates the hidden states of the previous layer and
the outputs of the forget, input, and output gate. Moreover,
the hidden state aggregates the spatial-temporal information
of all past time slots and passes the information to the next
time slot. Thus, the hidden state plays an essential role in
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controlling long-term information flow in Conv-LSTM. The
convolution operation adopts multiple fixed-size filter kernels
to extract neighbor spatial information. Each convolution
kernel is a square matrix to detect a grid’s or a matrix’s
characteristics from different aspects. For example, if the shape
of the input tensor for convolution module is X (Cj;,, w, h),
the output Y(Coys, w, h) can be represented in Eq. (9). Ciy
and C,,; represent the number of channels of input and output
tensor, respectively.

Cin—1

y=b+ZWc*XC 9)

c=0

where W, denotes weights in the convolution kernel, x rep-
resents the valid 2D cross-correlation operator, b denotes the
learnable bias.

Similar to the traditional LSTM, Conv-LSTM contains three
gates: input gate (i), forget gate (fx) and output gate (og).
In addition to the actual input Xy, the previous cell state Cy_1
and the output of the previous cell /;_; (hidden state) are
other inputs to the current cell. The forget gate f; filters the
information from former cell states to remember important
knowledge for the current cell state. The input gate iy as a
filter on the input data can remember important knowledge
for the current state. The outputs from both forget and input
gates are merged as the current state C; connecting to the
next cell. The output gate ox comprehensively considers the
current state, the current input, and the previous cell state to
determine what information is used as the output s from the
current unit.

Note that zero-padding is implemented before the convolu-
tion operation to ensure that the output has the same number
of rows and columns as the input. Moreover, unlike traditional
CNN, the pooling layer is not used in Conv-LSTM since the
resampling process will reduce the output size.

C. Temporal Dependencies

There are three historical periods for providing temporal
dependency instead of all training data or a quite long subset
of the data. The length of a training sequence can affect the
model’s perception of the temporal features, the extraction
of hidden temporal features, and the model’s training time
complexity. An appropriate training sequence does not mean
too lengthy time series. It may only require certain historical
periods to provide crucial temporal information. For example,
the spatial-temporal patterns of bike-sharing demand during
rush hours may be similar on weekdays, and bicycle usage
in the previous week might be correlated to the usage at the
same time in this week.

Therefore, in this study, the temporal dependency is cap-
tured from three aspects: closeness, period, and trend. This
way of capturing temporal features has been used in previous
studies [23], [24]. Given the time slot of the prediction task,
closeness captures the temporal dependency of bicycle usage
in the past one day; period captures the bicycle usage in the
past a couple of days; trend aims to capture the long-term
dependency on a weekly scale. Their formal definitions are

provided in Eq.(10) to Eq.(12):
Xeloseness — (X, 1 Xy— o1y - > Xi—1) (10)
xperiod S Xiaa) (A1)
S Xi—1e8) (12)

= {X1—24x1,» Xi—245(1,-1)5 - -
trend
XM = X 16841y X1—1685(1y—1)> - -

In this study, /. is selected as 24 to capture the historical
observations in the past 24 time slots. /, is chosen as 7 to
reflect the bicycle usage at the same time in the past seven
days. I, is selected as 2 to capture the bicycle usage at the
same time in the past week and the week before the past.
The training time complexity of the above setting will be
lower than training with a lengthy period of data. The strategy
might also reduce the interference of data noise. The proposed
model will be compared with a simple Conv-LSTM model in
this study that performs the training using a long period of
historical data (i.e., in the past 336 hours).

D. Feature Fusion

As shown in Fig.2, after extracting temporal features,
the outputs of three Conv-LSTM modules (Feioseness> Fperiod
and F;,enq) need to be fused to do the final prediction. There
are three strategies of fusion evaluated in this study, including
weighted element-wise addition (STMN-WADD), concate-
nation (STMN-CAT), and weighted concatenation (STMN-
WCAT). The equations of them are shown as follows:

Fear = Feloseness @ ]:period @ Firend (13)
Fwapp = We o Feloseness + Wp o fperiod + Wi o Firena
(14)

Fwear = Wf o (fcloseness 2] ]:period @ ]:trend) (15)

where + and o represent element-wise addition and Hadamard
product [24], [65], respectively. & represents the concatenate
operator. W, Wy, W;, and Wy represent the parametric ten-
sor of the corresponding spatial-temporal feature, respectively.

The weights are learnable parameters during model training
for adjusting the contribution of each Conv-LSTM module
in STMN. Weighted addition and weighted concatenation
have apparent distinctions when fusing features. The shape
of weights in Fwapp keeps the same as the shape of
spatial-temporal features in all dimensions, and the weight in
Fwcar maintains the same shape as the fused features at least
two dimensions. Moreover, the concatenation expands one
of dimensions to guarantee the diversity of spatial-temporal
features from different historical periods. However, the addi-
tion mixes all historical information together to predict bike
usage. After assessing the prediction accuracy of STMN using
above mentioned feature fusion strategies, the performance of
STMN-WCAT is much better than the other two variants (the
results will be introduced in next section).

V. EXPERIMENTS AND RESULTS
A. Settings

1) Research Areas: In order to assess the prediction accu-
racy of STMN and baseline models, we adopt bike-sharing
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TABLE 1
PARAMETERS ABOUT RESEARCH AREAS
City . New Taipei . New York
Singapore Chicago
Para. City City
Cell Size 2km x 2km | lkm x lkm | 2km x 2km | 0.8km x 0.8km
Temporal
1 hour 1 hour 1 hour 1 hour
Granularity
Training 16/06-02/08 | 21/06-29/10, | 01/06-30/09, 01/04-31/08,
Period 2017 2017 2019 2014
Validation 03/08-31/08 | 30/10-30/11, | 01/10-25/10, 01/09-30/09,
Period 2017 2017 2019 2014

origin-detestation datasets from four cities, including Sin-
gapore, New York, New Taipei City, and Chicago. For
station-based systems in New York and Chicago, the datasets
are collected from the records of travel starting and end-
ing stations; for dockless systems in Singapore and New
Taipei City, the datasets are collected from raw GPS records
documenting coordinates when a user starts or ends his/her
travel. GPS trajectories have been pre-processed to remove
outliers. In particular, we adopt the approach from an existing
research [2]. Firstly, oscillation sequences caused by GPS
drifts are detected and removed. We also remove short-range
location switches that are possibly caused by imprecision
of GPS positioning (e.g., within 150 meters in Singapore).
Finally, the OD pairs are generated after removing trips with
speed exceeding a threshold (e.g., 30 km/h) since they could be
caused by the redistribution of bikes. Four research areas are
shown in Fig. 1. The value of each cell represents the number
of travels that start from this cell during one hour, excluding
travels ending in the same cell. Since bicycle trips starting and
ending in the same cell do not affect the overall availability
of bicycles in the cell. We do not consider such trips in
this study. These within-cell trips can be easily incorporated
into the model input if demanded. Besides, eighty percent of
bicycle demand data are used to train models, and the remain-
ing twenty percent are used to validate the performance of
models.

Table I shows spatial resolution (cell size), data aggregation
interval (temporal granularity), training period, and validation
period of datasets. Spatial resolution ranges from 800 meters
to 2 kilometers in four cities. The New York dataset adopted
in this study is the same as one of the datasets used in [23].
The dataset is provided in an aggregate form, and the spa-
tial resolution is predefined. The grid cell size is roughly
800 meters. For the three remaining cities, to ensure that
each city will have an adequate proportion of cells (i.e.,
over 40%) with bicycle usage, we adopt 2 km as the spatial
resolution in Singapore and Chicago, and 1 km in New Taipei
City.

2) Index of Performance: In order to evaluate the model
performance, we select three indices which are commonly
used to assess prediction accuracy, namely, Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). All of them are defined as
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following equations from Eq. 16 to Eq. 18, respectively [23],
[24], [66].

100% ~— 9i — yi
MAPE = ”Z|yl Vi (16)
n. <= Vi
i=1
1 n
RMSE = ;2(91-—%-)2 (17)
i=
1 n
MAE =~ [5i - | (18)

i=1

where §; denotes the prediction result and y; denotes the true
value of bicycle usage.

3) Baselines: We compare all variants of STMN with the
following baselines:

A) ARIMA: Auto-Regressive Integrated Moving Aver-
age model is a well-known time-series prediction model.
According to the autocorrelation and partial autocorrelation
analysis, it can select an autoregressive model (AR), a moving
average (MA) model, or both of them (ARMA) to predict
future states.

B) LSTM: Long Short-Term Memory is a typical deep
learning model commonly used to forecast sequential infor-
mation, especially applied in natural language processing and
machine translation. The performance of LSTM is better than
Recurrent Neural Network since it adopts the gate theory to
keep long-term dependency in its hidden states.

C) Simple Conv-LSTM: The simple Conv-LSTM model
is an effective prediction model to forecast spatial-temporal
information. This model is able to consider spatial and tem-
poral features together to predict feature states. It has multiple
application scenarios, such as precipitation nowcasting and
traffic flow prediction [30], [63]. Simple Conv-LSTM adopted
in this study is a single independent framework to predict
future bike usage training with the historical usage data in
the past 336 hours (past two weeks).

D) STRN: Spatial-Temporal Residual Network is a hybrid
deep learning model, and it represents good performance
on crowd flows prediction. This model is satisfactory for
extracting spatial-temporal features using deep residual units.
Many studies have adopted the architecture similar to STRN
to improve the prediction accuracy [23], [24].

4) Hyperparameter Settings: The hyperparameters of each
Conv-LSTM module are the same in three historical periods.
There are two stacked layers in each Conv-LSTM module,
the first layer Conv1 uses 64 filters and second layer Conv2
adopts 32 filters. Thus, the dimensions of such two hidden
states layers are (64, w, h) and (32, w, h), respectively. Here,
w and h refer to the width and height of a study area,
respectively. The size of each convolution kernel is 3 x 3 to
capture short-distance correlations. Also, in order to maintain
the same size as the research area, we adopt zero-padding
technology that uses zero to fill the outside states, which
assumes no prior knowledge for outside. The optimization
algorithm adopts Root Mean Square Prop (RMSProp) that was
initially used in recurrent neural network [67]. The MSELoss
function is adopted in this study as usual practice, and it
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TABLE 11
OVERALL ACCURACY ABOUT ALL DATASETS

utilizes mean squared error (MSE) to measure the loss between
the prediction and the ground truth [68]. The definition of MSE
is shown in Eq. 19.

1 <
MSE = ;;(J’i —)?
=

19)

where J; denotes the prediction value, and y; denotes the
ground truth.

For two weighted fusion strategies, Wy in STMN-WCAT
represents the parametric tensor with shape RF*w>t F
denotes the number of channels of the concatenated feature.
We, Wp and W, in STMN-WADD represent three paramet-
ric tensors having the same shape as Fejoseness> 7 period
and Firend, respectively. The shape of parametric tensors
in STMN-WADD is R&*®@xh - represents the number of
channels of the corresponding spatial-temporal features.

For STRN, the hyperparameters are selected the same as
in its paper, including four residual layers for each historical
periods [23]. For LSTM and ARIMA, the hyperparameters
of them have been calibrated to achieve optimal prediction
results. All experiments are implemented by Pytorch frame-
work [69]. And they are conducted on a workstation with Intel
Core 17-8700 CPU and one Nvidia GeForce RTX 2070 Super
Graphics Card.

B. Results

1) Overall Accuracy of Models: We use average MAPE,
MAE, and RMSE as overall measurements based on all
cells containing bicycle demand on entire validation periods.
Table II shows overall measurements of three types of STMN
variants comparing with other baselines. Given the same
indicator, the best performing model is marked with * in
Table II.

According to prediction results, STMN performs better than
other baselines across all datasets. In general, the time-series
model (ARIMA) owns the lowest prediction accuracy since it
is hard to handle the non-stationary sequence, and it does not
leverage any spatial information. Similarly, LSTM captures
temporal patterns without considering the spatial relationship
among the cells. Therefore, the performance of LSTM is
still worse than Simple Conv-LSTM, STRN, and all STMN
variants. Simple Conv-LSTM trains with the historical data

. CONV- STMN- | STMN- | STMN-
City Index | ARIMA | LSTM LSTM STRN WADD CAT WCAT
RMSE | 9.7105 | 6.2404 | 7.8266 | 5.8792 | 5.3777 | 4.7112 | 4.6776*

Singapore | MAPE | 1.8185 | 0.9971 | 1.2699 | 0.8709 | 0.6079 0.628 | 0.5959*
MAE 2.8405 | 1.8358 | 5.2248 | 2.0594 | 1.4817 1.4739 | 1.3873*

New RMSE | 2.8082 | 2.2408 | 1.6946 | 1.9723 | 1.7531 1.7148 | 1.6363*
Taipei MAPE | 1.2721 | 0.8728 | 0.7185 | 0.8146 | 0.7148 | 0.6936" | 0.6954
MAE 0.7859 | 0.5604 | 0.5343 | 0.5445 | 0.5261 | 0.5911 | 0.4646*

RMSE | 89316 | 6.6926 | 3.1632 | 2.9758 | 2.9071 | 2.7323* | 2.8974

Chicago | MAPE | 1.8405 | 1.0773 | 0.7758 | 0.6991 | 0.6892 0.696 | 0.6761*
MAE 1.6441 1.2186 | 1.1304 | 0.7996 | 0.8005 0.871 0.7935*

New RMSE | 16.2427 | 6.3901 7.306 | 6.3900 | 5.6627 | 5.5004 | 5.4703*
York MAPE | 1.9607 | 0.4713 | 0.6208 | 0.5933 | 0.4485" | 0.4914 | 0.4511
MAE 7.8756 | 2.8793 | 3.7701 | 3.0917 | 2.5659 | 2.7129 | 2.5119*

during the past 336 hours using neighbor spatial information.
However, we find that the prediction accuracy of this model
is lower than the accuracy of STRN and all STMN variants.
Such long-term historical data contain much unnecessary
information that interferes with the model when capturing
spatial-temporal dependency. Although STRN acquires good
prediction results, STMN achieves better performance in all
indicators. Particularly, STMN-WCAT produces an improve-
ment of MAPE from 3% (in Chicago) to 27% (in Singapore)
compared with STRN.

Regarding the impacts of different feature fusion strategies,
we hereby discuss how the fusion strategy influences the
prediction accuracy of STMN. We find that the performance
of STMN-WCAT is the best most of time, but the other
two variants have a few indicators better than STMN-WCAT.
Specifically, in New Taipei City, STMN-CAT achieves a
slightly better result than STMN-WCAT (MAPE: 69.36%
vs. 69.54%). STMN-CAT performs better than STMN-WCAT
(2.7323 vs. 2.8974) in Chicago from the perspective of MAPE.
Also, in New York, STMN-WADD approaches a better result
in MAPE (44.85% vs. 45.11%). However, we find that the
accuracy difference between STMN-WCAT and the other
two variants is pretty small. Besides, the computing costs
of all three STMN variants are quite similar, such as time
complexity when training models. The most important fact is
that STMN-WCAT performs better than the other variants in
most indicators.

We think that two main reasons lead to such difference
between STMN-WCAT and its variants. Firstly, the weighted
concatenation can maintain the diversity of spatial-temporal
information generated from three key historical periods. Sec-
ondly, during the backpropagation step, the weights of the
fused feature can be updated based on the loss information
calculated by the loss function. Therefore, STMN-WADD
mixes the spatial-temporal information extracted from differ-
ent historical periods, and STMN-CAT is not sensitive to
responding to the loss information. In sum, for predicting
sharing-bike usage, STMN achieves the best performance
compared with baselines, and the weighted concatenation is
an effective strategy to fuse spatial-temporal features.

2) Performance of Models in Areas With Varying Levels of
Bicycle Usage: We further evaluate the models’ performance
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Fig. 5. Performance of four deep learning models during peak periods.

in areas with different levels of bicycle usage. We separate  high-demand cells, the prediction accuracy of STMN-WCAT
cells with different bicycle usage into four quantiles in each is much higher than the accuracy of other models. Particularly,
city and then assess the prediction accuracy of cells in each in Singapore (Fig. 4A) and New York (Fig. 4D), for cells in
quantile. Based on the models’ performance in overall accu- the fourth quantile, the median MAPE of STMN-WCAT is
racy, in the following performance analysis, we only evaluate smaller than 25%, and it is the lowest compared with other
STMN-WCAT and other deep learning baseline models. (We models. However, in New Taipei City (Fig. 4B) and Chicago
also discuss the relationship between the length of historical (Fig. 4C), the performance of STMN-WCAT is similar to other
training periods and the prediction accuracy for STMN-WCAT deep learning models for cells with large usage. This fact
in Appendix Section.) illustrates that STMN-WCAT has a similar prediction ability
We find that STMN-WCAT outperforms other deep learn- to other models on the two datasets for cells with large usage.
ing models at all four quantiles of bicycle usage on most However, STMN-WCAT performs much better in Singapore
datasets. Fig. 4 shows the distributions of MAPE of four and New York. Furthermore, the advantages of STMN are also
models under different levels of bicycle usage. Specifically, shown on the other quantiles of bicycle usage.
the performance of models in high-demand cells is important Note that the prediction accuracy of low-demand cells (in
since precise prediction results in such cells help to satisfy the first quantile) is commonly lower than the accuracy of
users’ needs when operating bike-sharing systems. For these cells in other usage levels on all datasets. These low-demand
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cells are indispensable because the proportion of them is
relatively large. Furthermore, the spatial distribution of such
cells is random, and the emergence of low-demand cells is
irregular. It is hard for prediction models to perceive the
historical pattern of such low-demand cells. However, even
for such cells, the performance of STMN-WCAT is still better
than other models. To sum up, STMN has achieved better
performance in areas with varying levels of bicycle usage.

3) Performance of Models During Peak Periods: We further
assess the prediction accuracy of bike usage during peak hours.
Meeting the users’ needs during peak periods is an essential
task for bike-sharing systems. We select cells containing bike
usage during the morning peak (07:00-10:00) and the evening
peak (17:00-20:00) to assess the accuracy of STMN-WCAT
and other deep learning baseline algorithms. Fig. 5 shows the
models’ performance during peak hours in all cities (indicators
including MAPE and MAE).

Generally, STMN-WCAT outperforms other models during
both morning peak and evening peak. During the morning
peak, in Singapore, STMN-WCAT performs better than other
models. Specifically, the average MAE of STMN-WCAT is the
lowest, and the median MAE is smaller than five. Also, during
the evening peak, the maximum MAE of STMN-WCAT is less
than twenty-seven, but the maximum MAE of STRN is more
than thirty-five. In New York, STMN-WCAT outperforms
other models during both peak periods, and the prediction
error of STMN-WCAT is much smaller than errors of other
models. Although the prediction accuracy of STMN-WCAT is
quite close to the accuracy of several baselines in New Taipei
City and Chicago, the performance of STMN-WCAT is stable
across all datasets.

In sum, the performance of STMN is better than other
baseline models across four datasets from three perspectives.
The results suggest the robustness of STMN for short-term
forecast of bicycle usage.

VI. DISCUSSIONS AND CONCLUSION

This paper proposes a hybrid deep learning model to
predict bicycle usage across both docked and dockless
bike-sharing systems. In particular, Spatial-Temporal Memory
Network (STMN) is proposed to predict future bicycle usage
by capturing dynamic spatial-temporal dependency. We eval-
uate several existing prediction models and STMN across
datasets from four cities, including Singapore, Singapore, New
Taipei City, Chicago, and New York. According to the results,
STMN outperforms other baseline models on all datasets
from aspects of overall accuracy, accuracy in areas with
varying levels of usage, and accuracy during peak periods.
The experimental results illustrate that STMN is reliable and
robust in predicting bicycle usage for two different types
of bike-sharing systems. Moreover, based on more accurate
forecasts of bicycles’ demand in cities, this algorithm is helpful
for meeting users’ needs more effectively when operating
bike-sharing systems.

Currently, we only use historical observations of bicycle
usage as the input to train the STMN models. According
to existing research [23], [24], [27], other factors related to

TABLE III

OVERALL ACCURACY ABOUT ALL DATASETS UNDER
DIFFERENT TEMPORAL RESOLUTIONS

Reference Group | Experimental Group I | Experimental Group II | Experimental Group IIT

1:=24,1,=7,1,=2 1.=12, 1,=5, 1,=1 1.=48, 1,=14, 1,=2 1.=36, 1,=7, 1,=2

City Index | STMN-WCAT STMN-WCAT STMN-WCAT STMN-WCAT
RMSE 4.6776 4.731 5.1297 4.6270*
Singapore | MAPE 0.5959* 0.6388 0.7971 0.6029
MAE 1.3873 1.6021 1.6083 1.34417
New RMSE 1.6363" 1.7684 1.6864 1.6631
Taipei MAPE 0.6954% 0.7386 0.7461 0.7176
MAE 0.4646™ 0.5035 0.4840 0.5170
RMSE 2.8974 3.0235 2.7941* 2.8562
Chicago | MAPE 0.6761 0.7065 0.6403 0.6388"
MAE 0.7935 0.8274 0.6641 0.6586"
New RMSE 5.4703 5.0015% 5.0207 5.2889
York MAPE 0.4511% 0.4725 0.4592 0.5223
MAE 2.5119 2.4371" 2.3773 2.5918

bicycle usage could be considered, such as weather conditions,
topography, public transportation accessibility, and other built
environment characteristics. For example, it is found that
usage of bicycles could decrease during bad weather or in
areas with steep slopes [70]. On the other hand, demand for
shared bicycles around the transit stations is relatively high
in some cities [2], [71]. Therefore, incorporating such factors
could possibly improve the performance of the prediction
model.

In the future, we plan to incorporate such factors into STMN
and evaluate their impact on the model performance. For
factors that vary with time (e.g., precipitation), one possible
strategy is to introduce a convolution layer to map such
dynamic information to a high-dimension tensor that have the
same shape with the output of each Conv-LSTM, and fuse this
tensor with the output using feature engineering. For long-term
stable factors (e.g., topography), one possible approach is to
embed such static information into a high-dimension tensor,
which can then be merged with the output of the feature
fusion layer (from three individual Conv-LSTM modules)
to support the prediction task. Note that the availability of
bicycles in grids also affects the bicycle usage. Therefore, one
possible future work is to introduce the number of available
bicycles or available docks in each cell as an additional
constraint, and further evaluate its impact on the model
performance.

APPENDIX

In this appendix, we report how the definition of the
three periods (i.e., Trend, Period, Closeness) affects the per-
formance of the prediction model. Note that the temporal
dependency captured by the STMN-WCAT is provided by
the observations from the three historical periods shown from
Eq.(10) to Eq.(12), where [.,[, and [, control the length
of the corresponding historical period, respectively. Here,
we define the model with the same parameter settings in
the main body as the Reference Group. We incorporate three
sets of experiments with reducing such parameters to 12,
5 and 1 as Experimental Group I, increasing /. and [, to
48 and 14 as Experimental Group II, and only increase I,
to 36 as Experimental Group III, respectively. The parame-
ter settings of each group and the prediction accuracy of
STMN-WCAT show in Appendix Table III, and the best
performing model is marked with * under given the same
indicator.
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In general, the Reference Group achieves the best perfor-
mance. Compared to all Experimental Groups, the Reference
Group is better at MAPE in Singapore, all three indicators
in New Taipei City, and MAPE in New York. Experimental
Group I achieves better at RMSE and MAE in New York.
Experimental Group II only outperforms at RMSE in Chicago.
Moreover, Experimental Group III performs better at MAE
and RMSE in Singapore, MAE and MAPE in Chicago. These
results indicate that the STMN-WCAT captures temporal
dependency from the three historical periods selected in the
Reference Group, making the models more robust.

Note that all historical training periods are shortened in
Experiment Group I, the accuracy of Experiment Group I
is generally lower than the Reference Group except RMSE
and MAE in New York. The prediction model cannot capture
sufficient temporal dependency from such short periods, and
therefore, the accuracy in this group is lower. Additionally,
the accuracy of Experiment Group II is also not higher than
that of Reference Group, which indicates that several redun-
dant information or noise affects the model’s performance.
The performance of Experimental Group III is similar to that
of the Reference Group, but the prediction accuracy in several
cities is still lower than the Reference Group. Some redundant
information is captured from the extending closeness, which
denotes that the past 24-hour bicycle usage data is enough for
the model to extract sufficient temporal dependency. These
results suggest that shortening the training periods leads to
worse performance, while extending the periods does not
necessarily improve the prediction accuracy of the model.
Additionally, choosing appropriate training periods has an
impact on the prediction accuracy when training the prediction
model.
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