

Annals of the American Association of Geographers

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/raag21

Tourism Geography through the Lens of Time Use: A Computational Framework Using Fine-Grained **Mobile Phone Data**

Yang Xu, Jingyan Li, Jiaying Xue, Sangwon Park & Qingquan Li

To cite this article: Yang Xu, Jingyan Li, Jiaying Xue, Sangwon Park & Qingquan Li (2021) Tourism Geography through the Lens of Time Use: A Computational Framework Using Fine-Grained Mobile Phone Data, Annals of the American Association of Geographers, 111:5, 1420-1444, DOI: 10.1080/24694452.2020.1812372

To link to this article: <u>https://doi.org/10.1080/24694452.2020.1812372</u>

Published online: 16 Oct 2020.

|--|

Submit your article to this journal 🖸

View related articles

View Crossmark data 🗹

Citing articles: 2 View citing articles 🗹

Tourism Geography through the Lens of Time Use: A Computational Framework Using Fine-Grained Mobile Phone Data

Yang Xu, * Jingyan Li, * Jiaying Xue, * Sangwon Park, † and Qingquan Li

^{*}Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University

[†]Hospitality and Tourism Research Centre (HTRC), School of Hotel and Tourism Management, The Hong Kong Polytechnic University

[‡]Guangdong Key Laboratory of Urban Informatics, School of Architecture and Urban Planning, Shenzhen University

Location-aware technologies and big data are transforming the ways we capture and analyze human activities. This has particularly affected tourism geography, which aims to study tourist activities within the context of space and places. In this study, we argue that the tourism geography of cities can be better understood through the time use of tourists captured by fine-grained human mobility observations. By using a large-scale mobile phone data set collected in three cities in South Korea (Gangneung, Jeonju, and Chuncheon), we develop a computational framework to enable accurate quantification of tourist time use, the visualization of their spatiotemporal activity patterns, and systematic comparisons across cities. The framework consists of several approaches for the extraction and semantic labeling of tourist activities, visual-analytic tools (time use diagram, time-activity diagram) for examining their time use, as well as quantitative measures that facilitate day-to-day comparisons. The feasibility of the framework is demonstrated by performing a comparative analysis in three cities during representative days when tourists tended to show more regular patterns. The framework is also employed to examine tourist time use during special events, using Gangneung during the 2018 Winter Olympics (WO) as an example. The findings are validated by comparing the spatiotemporal patterns with the WO calendar of events. The study provides a new perspective that connects time geography and tourism through the usage of spatiotemporal big data. The computational framework can be applied to compatible data sets to advance time geography, tourism, and urban mobility research. Key Words: human mobility, mobile phone data, time geography, time use, tourism geography.

eography and tourism are naturally con- $\dot{\mathbf{T}}$ nected. The inherent linkage between the two has forged a research area that aims to study and understand tourist activities within the context of space and places. The field of tourism geography, in a global and interconnected world, is becoming more important given the enhanced mobilities of people across locations, regions, and countries. According to the The Travel & Tourism Competitiveness Report 2019 (Calderwood and Soshkin 2019) by the World Economic Forum, the number of international arrivals worldwide reached 1.4 billion in 2018 and is predicted to reach 1.8 billion by 2030. The increasing connections between travelers and tourism destinations, as foreseen by Franklin and Crang (2001), will generate "new ways of living, new ties of space, [and] new places" (8) that inspire future research in tourism geography.

Through the years, numerous discussions have taken place to define, review, and anticipate the development of the field (Williams 1998; Gibson 2008; Hall 2013; Hall and Page 2014). Despite the diverse views from scholars, the key questions concern the where (do tourism activities develop), who (are the tourists), how (is tourism developed), and what (is the impact on the physical, cultural and socioeconomic systems) aspects of tourism (Williams 1998). To tackle these questions, geography has played a key role, by providing observations, theories, methodologies, and tools to facilitate the understanding of tourism activities in the context of space and time. Although these questions continue to be central to tourism geography, there is no doubt that the field is rapidly evolving. This is largely due to the emergence of disruptive technologies-such as location-aware technologies and big data-that transform the ways in which tourists travel and the ways in which we capture and analyze them (Birenboim and Shoval 2016; Shoval and Ahas 2016; J. Li et al. 2018).

One example is the impact of tracking technologies. As claimed by Shoval and Ahas (2016), increasing studies are benefiting from the use of technologies such as Global Positioning System (GPS), mobile positioning, Bluetooth tracking, and geocoded social media. The adoption of these tracking technologies has produced a variety of tourism big data. Such data have been used to study important research topics, such as the spatiotemporal behavioral patterns of tourists (Ahas et al. 2007; Tchetchik, Fleischer, and Shoval 2009; Shoval et al. 2011; Huang and Wu 2012; Zheng, Zha, and Chua 2012; Edwards and Griffin 2013; Wood et al. 2013; Bauder and Freytag 2015; Vu et al. 2015; De Cantis et al. 2016; Kim et al. 2019), tourism activities during special events (Pettersson and Zillinger 2011; De Cantis et al. 2016), tourist route choice and planning (Lu et al. 2010; East et al. 2017), and behavior of repeat visitors (Tiru et al. 2010; Kuusik et al. 2011; McKercher et al. 2012), among others.

Despite these fruitful research outcomes, one aspect of tourist activities that has been understudied is their time use, which is an important topic tied to the theory of time geography (Hägerstrand 1970). To date, limited research has been conducted to link time geography concepts with tourist travel behavior (Pultar and Raubal 2010). Because tourism is often considered as an escape from daily routines (Hall 2005a, 2005b), it usually involves additional efforts and expenditure of travelers. Their time allocation during travels will be affected by their financial capacity, time budget, and other constraints. It is therefore important to obtain an improved understanding of how tourists allocate their time across space and places. Such efforts will generate new knowledge of tourism geography, new hypotheses of tourist activities, and valuable information that is beneficial to the development of tourism destinations.

As previously mentioned, studies on the time use of tourists are scarce. One study by Birenboim et al. (2013) used GPS data to analyze the time use of visitors at a theme park in Catalonia, Spain. The sample covers a few hundred individuals. Similar studies that leverage other tracking technologies (e.g., geocoded social media, positioning) are almost absent. There are a few reasons that hinder the adoption of these tracking technologies for detailed time use analysis. GPS data are able to capture travelers' movements at a fine spatiotemporal resolution. Because data collection is costly and time-consuming, however, most of the GPS-based studies aim at small geographic scales and limited sample sizes (Tchetchik, Fleischer, and Shoval 2009; Pettersson and Zillinger 2011; Shoval et al. 2011; Birenboim et al. 2013; De Cantis et al. 2016). Social media data enable tourism analysis at broader scales, and they have clear advantages for cross-site comparisons and even global-level analysis (Wood et al. 2013; Keeler et al. 2015; Belyi et al. 2017). The sample sizes are also much larger. Individual observations, however, can be very sparse (Lo et al. 2011) and certain demographic tiers tend to be underrepresented (Salas-Olmedo et al. 2018). Such issues make social media data unfit for accurate quantification of time use. Mobile tracking technologies and the data produced are suitable for large-scale mobility analysis. For instance, one typical type of mobile phone datanamely, call detail records (CDRs)-has been widely used to study human mobility patterns from different perspectives (Gonzalez, Hidalgo, and Barabasi 2008; Song et al. 2010; Becker et al. 2013; Silm and Ahas 2014; Xu et al. 2015; Yuan and Raubal 2016; Xu et al. 2017; Xu et al. 2018; Xu et al. 2019). CDRs, however, are regarded as "passive mobile phone data" (Blondel, Decuyper, and Krings 2015; C. Chen et al. 2016), because locations of phone users are passively generated during certain types of phone usage activities (e.g., calls and text messages). In other words, observations are still sampled irregularly over time, and data points can be very sparse for inactive phone users. Therefore, CDRs could generate biased estimates of time use characteristics.

Are we facing a dead end here? Probably not. In recent years, our capabilities to capture detailed observations on human activities have been further augmented. For instance, many studies have adopted mobile signaling data (MSD) for human mobility analysis (M. Li et al. 2019; Yan et al. 2019). Different from CDRs, MSD can track phone users' locations in a more continuous manner through various signaling events (e.g., data usage, cellular handover, periodic update) triggered by the telecommunication systems (Janecek et al. 2015). This has greatly improved the data granularity, especially from a temporal perspective. Moreover, it is very likely that other types of data sets (e.g., Wi-Fi data, CCTV) will become more fine-grained in their spatiotemporal resolutions, and more accessible due to the emergence of new technologies such as 5G and Internet of Things.

Inspired by these technological advancements, we ask the following questions: How can we better understand tourist time use in cities as mobility observations of travelers become both massive and granular? What new knowledge will this bring to the geography of tourism? To answer these questions, we analyze a large-scale mobile phone data set collected in three cities in South Korea (Gangneung, Jeonju, and Chuncheon) during a period of one year. The data set provides a fine-grained view of tourist mobility by capturing travelers' stay (dwelling) activities at a high spatial resolution. A computational framework is developed to enable accurate quantification of tourist time use, the visualization of their spatiotemporal activity patterns, and systematic comparisons across cities. The major contributions of this research are as follows.

- We first develop an anchor point extraction approach that converts each individual's cellphone trajectory into a sequence of stays at meaningful activity locations. A semantic labeling process is then introduced to annotate each individual's stays or movements into different activity categories. The semantics derived in this step can indicate travelers' dwelling places in a city, when they tended to travel, where their activities occurred, and when they were outside of a city. The labeling process provides an effective solution to enriching the semantics of travelers' activities when contextual information is absent in big data (e.g., mobile phone data).
- We introduce an approach to derive individuals' daily time use diagrams, which describe a traveler's time allocation across different types of activities in a day. These individual time use diagrams are further aggregated by each observation day to form the daily time use diagrams of a city. A workflow based on (1) a coarse segmentation of individuals based on travel styles and (2) a hierarchical clustering algorithm based on time use similarity metrics is introduced to determine how individuals are organized in the aggregated diagrams. The resulting diagrams could convey meaningful patterns that reveal the heterogeneity of tourist time use as well as their collective dynamics that shape the signature of a city.
- A day-to-day similarity measure is introduced to identify the so-called representative days in a city when tourists tended to show more regular patterns, compared to days when they exhibited unique characteristics.
- We apply the computational framework over cellphone trajectories collected in Gangneung, Jeonju, and Chuncheon. A comparative analysis is performed to understand tourist time use in the three cities

during representative days. We also introduce another visualization layout—the time–activity diagram along with spatial mapping of tourist activities, to complement the findings derived from the timeuse diagrams.

• The framework is also employed to examine tourist time use during special events. We use Gangneung during the 2018 Winter Olympics (WO) as an example and demonstrate the capability of the framework in capturing the transitions of tourist activity patterns before, during, and after this megaevent. A close examination of tourist activities on 25 February 2018 (the last day of the 2018 WO) is performed and the results are validated by comparing the spatiotemporal patterns with the WO calendar of events.

We believe the study provides a new perspective that connects time geography and tourism through the usage of spatiotemporal big data. The computational framework enables a new way to analyze large-scale and fine-grained human mobility observations. The framework can be leveraged to generate meaningful insights into travelers, which are beneficial to spatial planning of cities and management of tourism destinations, and might inspire new hypotheses of tourist travel behaviors.

Study Area and Data Set

Mobile Phone Data Set

This study uses a mobile phone data set collected in South Korea. The anonymized data set tracks the location footprints of 116,807 international travelers¹ who visited any of the three cities of Gangneung, Jeonju, and Chuncheon between 1 August 2017 and 31 July 2018. The one-year data set was collected by one of the major cellular operators in South Korea as part of a tourism big data project with the Korea Tourism Organization. The authors received full permission to use the data set for research purposes.

Previous studies have mainly relied on two types of mobile phone data, namely, CDRs (see Gonzalez, Hidalgo, and Barabasi 2008; Xu et al. 2018) and MSD (Yan et al. 2019). These data sets document mobile phone users' geolocations at discrete time points. Different from CDRs or MSD, the data set used in this study tracks the sequence of locations where an individual tended to stay and for how long. Table 1 shows an example of an individual's phone records. Each record tracks the unique ID of

User ID	Date	Starting time	Ending time	Longitude	Latitude	
123***	2018-05-13	00:07:00	09:22:00	127.***	35.***	
123***	2018-05-13	09:48:00	12:48:00	127.***	35.***	
123***	2018-05-13	18:07:00	18:43:00	126.***	37.***	
					•••	
123***	2018-05-15	15:32:00	15:53:00	126.***	37.***	
123***	2018-05-15	15:59:00	23:25:00	126.***	37.***	

Table 1. Example of an individual's mobile phone records in the data set

the user, the location (longitude and latitude) at which he or she stayed, as well as the date, starting time, and ending time that define the corresponding stay period. Each row in the table corresponds to one stay activity and the time periods in between indicate movements among locations. For example, the first two rows in Table 1 indicate that the user stayed at two different locations from 00:07:00 to 09:22:00 and 09:48:00 to 12:48:00, respectively, and a trip was possibly conducted by the user in between (i.e., 09:22:00 to 09:48:00).

The locations were tracked at the level of mobile base stations (MBSs) and their densities in space reflect the spatial granularity of the data set. To better understand their spatial arrangement, for each of the three cities, we measure the distance from each MBS to its nearest peer. The summary statistics of the three cities are shown in Table 2. It can be seen that the spacing gaps between MBSs in all three cities are relatively small. Overall, the data set provides a fine-grained view of tourist mobility in both time and space. Such information allows for accurate quantification of travelers' time use characteristics.

General Background of the Three Cities

Gangneung, Jeonju, and Chuncheon are three cities in South Korea (Figure 1A). Gangneung is a city in the province of Gangwon-do with a population of 213,658 (as of 2017) and a total area of 1,040 km². The city has two expressways, one national highway, and a high-speed train line that connect Gangneung to other major Korean cities, such as Seoul, Incheon, and Busan. Gangneung is also one of the cities that hosted the 2018 WO from 9 to 25 February 2018. Indoor ice events were held in the Gangneung Olympic Park.

Jeonju is the capital of North Jeolla Province and the sixteenth largest city in South Korea. It covers an area of 206 km^2 and has a population of 652,392 (as of 2017). The city is renowned for traditional

Korean food and historical sites. It was chosen as a creative city for gastronomy as part of UNESCO's Creative Cities Network. It is accessible from Seoul by the Jeolla train line.

Chuncheon is the capital city of Gangwon Province. It has a total population of 281,725 (as of 2012) and a total area of 1,116 km². It is the terminal city of the Cyeongchun line, which connects Chuncheon to Seoul, and a series of train stations on the Cyeongchun line are located in the Chuncheon suburban area. Chuncheon is also the northern terminus of the Jungang Expressway and an essential destination on the Seoul–Yangyang Expressway that connects to Seoul and the east coastal region. Major cities in mainland South Korea are accessible through the Chuncheon Bus Terminal.

According to the mobile positioning data set, a total of 33,219 phone users visited Gangneung during the data collection period, compared to 18,625 for Jeonju and 66,646 for Chuncheon. Figures 1B through 1D illustrate the daily number of visitors² in the three cities. Some fluctuations are observed throughout the year. Notably, there is a significant spike in Gangneung that matches well with the period of the 2018 WO. Therefore, the data set offers a unique opportunity for examining tourist time use both during regular days and during special events.

Method

Derive Activity Anchor Points from Individual Cellphone Trajectory

To extract the time use of travelers in a city, an initial and important step is to identify and represent individuals' meaningful activity locations. One challenge in identifying such locations from mobile phone data is that an individual's observations could switch among adjacent cellphone towers or mobile base stations due to cellphone load balancing or

Xu et al.

	,							
City	Total number of MBS	Average nearest distance	Median nearest distance					
Gangneung	704	420 m	344 m					
Jeonju	782	250 m	181 m					
Chuncheon	861	443 m	283 m					

Table 2. Summary statistics of MBSs in each city

Note: MBS = mobile base station.

Figure 1. Locations of the three cities in South Korea and daily variations of visitors.

signal strength variation (Isaacman et al. 2012; Csáji et al. 2013). To tackle this issue, we adopt the concept of *activity anchor points*, which were frequently used in the geography literature to denote a person's activity locations (Dijst 1999; Schönfelder and Axhausen 2003; Xu et al. 2016). In this article, we define an activity anchor point as a set of MBSs that are close to each other and where an individual has spent a certain amount of time.

Given an individual's cellphone trace $T = \{(l_1, t_1^s, t_1^e), (l_2, t_2^s, t_2^e), \ldots, (l_n, t_n^s, t_n^e)\}$, where l_i denotes the MBS location of the *i*th record, and t_i^s and t_i^e denote the starting and ending time of the stay, the extraction of activity anchor points works as follows. First, we

compute the total time that the individual stayed at each MBS and sort them in descending order. We then select the MBS with the longest duration of stay and group all other MBSs within a roaming distance (Δd) of the selected MBS into a cluster. Among the MBSs that have not been assigned to any cluster, we select the next one with the longest duration of stay and perform the same grouping process. The process is repeated until all the MBSs in *T* are processed. We refer to these clusters as activity anchor points. Regarding the choice of Δd , given that the mean and median nearest distances between MBSs in three cities are all below 500 m (Table 2), we set Δd as 500 m in this study.

Figure 2. Extraction of activity anchor points from an individual's cellphone trace *T*. Each vertical segment corresponds to one mobile phone record in the raw data (e.g., rows shown in Table 1). A to *E* denote five distinct mobile base stations traversed by *T*. r_1 , r_2 , and r_3 denote the extracted activity anchor points. After the anchor point extraction, the individual's cellphone trace can be represented as a sequence of stays at these activity locations $r_1 \rightarrow r_3 \rightarrow r_2 \rightarrow r_3 \rightarrow r_1$.

In doing so, we can label each record in T using the corresponding activity anchor point. Figure 2 demonstrates the process of anchor point extraction and the labeling of activity locations. As shown in Figure 2, an individual's cellphone trace T traverses through five distinct MBSs in chronological order: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$. To group them into clusters, the MBS with the highest total duration of stay—A in this example—is selected. Because E is within 500 m of A, it is grouped with A to form the first cluster r_1 . Then, the next MBS with the longest duration of stay (C) is selected and it alone forms the second cluster r_2 , leaving B and D to form the third cluster r_3 . Thus, the individual's cellphone trace can be represented as a sequence of activity points: $r_1 \rightarrow r_3 \rightarrow r_2 \rightarrow r_3 \rightarrow r_1$. anchor Such sequences will be used as input to further derive travelers' time use characteristics.

Generate Daily Time Use Diagram of Individuals

In this study, we use a single twenty-four-hour day as the basic unit to derive and analyze the time use of travelers. It is a typical representation of *cyclical* *time*, which allows us to examine the cyclic process of travelers' time use characteristics and how they collectively portray the pulses and rhythm of a city. Because time use is often associated with specific activity types or purposes (Ellegård 1999), which are not directly available from the mobile phone data set, we introduce an approach to infer and describe the semantics of individual stays and movements as they explore a destination city.

We first define $T' = \{(r_1, t_1^s, t_1^e), (r_2, t_2^s, t_2^e), ..., (r_n, t_n^s, t_n^e)\}$ as an individual's *daily activity sequence*, where r_i denotes the activity anchor point of the *i*th record, and t_i^s and t_i^e denote the starting and ending time of the stay. The proposed approach aims to label the individual's stays or movements into one of the following five categories:

- Nighttime anchor point (NAP): To label the activity anchor point where an individual tended to spend most of the time between midnight and 7 a.m. The NAP can be used as a reasonable estimate of one's dwelling place (e.g., a hotel that an individual stayed at during that day). Because an individual could stay at multiple locations between midnight and 7 a.m. for a small amount of time, we only label the moststayed activity anchor point as NAP if the total duration of stay is greater than three hours. Otherwise, we label them as other activity locations (OTHERS). Note that the choice of the threshold (i.e., three hours in this study) will not affect estimation of time use at different locations but just the representation and visualization of the time use patterns. This parameter can be adjusted based on specific research purposes or validated when ground truth data of travelers' dwelling places are available (e.g., through a questionnaire). One special case of labeling NAP is that if an individual entered a city in the middle of a day and stayed overnight, we first detect the individual's NAP for the second day. If a NAP is detected, the proportion of time the individual was observed at this location (NAP) on the previous day is also labeled as NAP. For instance, if a visitor checked into a hotel at 9 p.m. on the first day and stayed in the hotel until 8 a.m. the next day, the activities during both 21:00:00 to 24:00:00 (Day 1) and 00:00:00 to 08:00:00 (Day 2) are labeled as NAP.
- New nighttime anchor point (NNAP): By exploring the mobile phone data set, we find that the NAPs of an individual could switch from day to day, which indicates a possible change of his or her dwelling place (e.g., change of hotel location). For example, an individual might check out from a hotel in the morning and check into another hotel in the evening on the same day. In this case, the first hotel location will be

Figure 3. Examples of the time use patterns of four selected individuals in the city of Jeonju. Each example consists of a space-time plot (left side) that shows the sequence of activities and movements, along with the corresponding daily time-use diagrams of the individual (right side). Five different colors are used to denote the activity categories: nighttime anchor point (red), new nighttime anchor point (green), OTHERS (yellow), TRAVEL (blue), and OUT (black).

labeled as the NAP and the second one will be labeled as the NNAP. The identification of such cases requires evaluating an individual's activity sequences for two consecutive days (T' and T'_{next}).

- Other activity locations (OTHERS): This is used to label activity anchor points that do not belong to the preceding two categories. They are used to reflect an individual's activity locations beyond NAPs (e.g., activities at scenic spots).
- *Travel (TRAVEL):* This labels individual movements or trips between consecutive stays. More precisely, the category of TRAVEL aims to describe individual movements within a city (i.e., intraurban movements).
- Out of the city (OUT): Note that the time use of individuals is derived from the perspective of a specific destination city. Thus, if an individual is not observed within the city being analyzed, we label this portion of time as OUT. This category can effectively reveal when tourists enter or leave a city, which is critical information for tourism sectors and local stakeholders.

Figure 3 shows examples of the time use patterns of four individuals in the city of Jeonju. Following the concept of space–time path (Hägerstrand 1970), we develop a space–time plot to visualize an individual's activities and movements over time. We use cylinders

to denote activity anchor points and dashed lines to denote travels. Five different colors are used to denote the semantic category of activities or movements. The first individual visited the city for only one day (Figure 3A). The starting time of the first record and the ending time of the last record he was observed in the city are 09:08:00 and 17:23:00, respectively. Thus, the time periods of 00:00:00 to 09:08:00 and 17:23:00 to 24:00:00 are labeled as OUT (black). The first stay activity of the individual was observed between 09:08:00 and 09:46:00, and this activity is labeled as OTHERS (yellow). Similarly, three other stay activities were observed from 10:54:00 to 13:05:00, 13:35:00 to 15:40:00, and 16:07:00 to 17:23:00. Because we do not observe any activity anchor points with a total duration of stay greater than three hours between midnight and 7 a.m., no activity is labeled as NAP or NNAP. The fraction of time that occurred between consecutive stay activities was labeled as TRAVEL (dashed lines in blue). At the right side of the space-time plot, a bar plot is created to visualize the time use of the individual in chronological order, along with the associated semantic information. We refer to this as the daily time use diagram of the individual.

Table 3. Coarse segmentation of individuals based on different travel styles in a city

Class	First and last activity	Scenario
C1	$NAP \rightarrow NAP$	Started and ended the day at the same dwelling place (e.g., hotel)
C2	$NAP \rightarrow NNAP$	Started the day at one dwelling place and switched to a new dwelling place at the end of the day
C3	$NAP \rightarrow OTHERS$	Started the day at the dwelling place and was observed at a different activity location at the end of the day
C4	$OTHERS \rightarrow NAP$	Started the day at a place and ended the day at the dwelling place
C5	$OTHERS \rightarrow NNAP$	Started the day at a place, returned to his or her dwelling place (e.g., a hotel) later, and switched to another dwelling place at the end of the day
C6	$OTHERS \rightarrow OTHERS$	Started and ended the day at locations other than the dwelling place
C7	$NAP \rightarrow OUT$	Started the day at the dwelling place and left the city before the end of the day
C8	$OTHERS \rightarrow OUT$	Started the day somewhere, returned to the dwelling place later, and left the city before the end of the day
С9	$OUT \rightarrow NAP$	Started the day somewhere and returned to the dwelling place at the end of the day
C10	$OUT \rightarrow OTHERS$	Out of the city at the beginning of the day but was observed at a location other than the dwelling place at the end of the day
C11	$\text{OUT} \rightarrow \text{OUT}$	Out of the city at the beginning of the day and then came to visit the city and then left
Note: NAI	P = nighttime anchor point; NNAP =	= new nighttime anchor point; OTHERS = other activity locations; $OUT = out of the city.$

The second individual stayed in Jeonju city for three whole days (Figure 3B). The individual spent the first whole day at a single activity anchor point. Thus, the activity is labeled as NAP (red). On the second day, the individual continued to stay at the same location between 00:00:00 and 15:57:00 (Day 2). Later in that day, the individual was observed at another location from 17:25:00 to 24:00:00 (Day 2). Interestingly, this location happened to be the NAP of the third day, where the individual stayed from 00:00:00 to 06:00:02 (Day 3). Therefore, we label the activity from 17:25:00 to 24:00:00 (Day 2) as NNAP (green), which indicates a change of possible dwelling place of the individual during the second day. Three other activities were observed during the third day. Because these activities did not occur at the NAP (of the third day), they are labeled as OTHERS. Because this individual has three days of observations, three different daily time use diagrams were derived. Note that although this traveler has NNAP (green color) identified on the second day, the associated time segment in the next day (i.e., the third day) is still recognized as NAP (red color). Similarly, the space-time plots and time use diagrams of the other two individuals are shown in Figure 3C and Figure 3D.

Generate Daily Time Use Diagrams of a City

Once the daily time use diagrams of individuals are derived, it is easy to organize them by each observation day, forming what we call the daily time use diagrams of a city. Such diagrams serve as the signatures of a city that reflect the pulses and rhythm of tourist activities. As an example, Figure 4A shows the daily time use diagram of Gangneung on 31 January 2018. Individual time use diagrams are organized from left to right, with the vertical axis showing their time use characteristics. Because individuals are organized randomly, the diagram does not convey meaningful information about the city. Thus, we propose two strategies to reduce visual clutter and further improve the readability of the diagram.

First, we categorize individuals into eleven classes based on the types of their first and last activities observed within a specified day. Individuals within the same class are then organized together in the aggregated diagram. We define these classes based on the first and last activities because their combinations enable a coarse segmentation of individuals by revealing different travel styles. The definition of the eleven classes and some typical scenarios are summarized in Table 3.

Figure 4B illustrates the diagram after grouping individuals by the eleven classes. The diagram starts to reflect some interesting patterns of the city. Individuals within the same class are still organized randomly, though. For example, some individuals belonging to C1 (NAP \rightarrow NAP) stayed in the city for the whole day, whereas some others could be out of the city in the middle of the day (i.e., individual

diagrams with black segments). These individuals cannot be easily distinguished in the diagram.

Thus, in the second step, we further perform an agglomerative hierarchical clustering algorithm over individuals within the same class. Given each individual's daily time use diagram, we sample the activity semantics (i.e., types) once every ten minutes. This give us a feature vector X with 144 elements:

$$X = [x_1, x_2, ..., x_{144}], \tag{1}$$

where x_j denotes the activity type of *j*th element, with $x_j \in \{\text{``NAP''}, \text{``NNAP''}, \text{``OTHERS''},$ "TRAVEL'', "OUT''}. When performing the hierarchical clustering algorithm, the distance between two feature vectors X and X' is defined based on the Hamming distance measure:

$$\Delta(X, X') = |\{j : x_j \neq x'_j\}|, j \in [1, 144],$$
(2)

The value of $\Delta(X, X')$ ranges between 0 and 144. For instance, two individuals with exactly the same daily time use patterns will have a Hamming distance of zero, whereas two people with complete different time use patterns will have a Hamming distance of 144. Figure 4C shows the time use diagram of the city by performing the hierarchical clustering algorithm over individuals in each of the eleven classes (using the average linkage method). The diagram now can effectively distinguish individuals with different time use patterns, both within and across the classes. For instance, four types of individuals can be quickly spotted within C1: (1) individuals who spent a notable proportion of time on TRAVEL but with the rest of time mostly at NAPs; (2) individuals who stayed at NAPs for almost the whole day; (3) individuals who spent a significant proportion of time at other activity locations (OTHERS); and (4) individuals who visited other cities in the middle of the day. It is also clear that most of the travelers in C1 departed from their NAP around 8 or 9 a.m., an important rhythm of their travel patterns. Note that the diagram can also reflect the percentage of individuals belonging to each class, which can be used to facilitate day-to-day comparisons. To sum up, the daily time use diagram we develop in this research could serve as a powerful tool for visualizing and analyzing the time use of individual travelers, interpersonal variations, and their collective patterns that form the signature of a city.

Day-to-Day Similarity of a City's Daily Time Use Diagrams

Given the methodology already introduced, we process the full data set to generate each city's daily time use diagrams through the data collection period (365 days), from which we can further measure the day-to-day similarities. Such information would allow us to identify "representative" days with more regular time use patterns of travelers as opposed to days with more unique characteristics that can be caused by special events.

Given a city on a specified day, we summarize the characteristics of its daily time use diagram as a feature vector V:

$$V = [c_1, c_2, ..., c_{11}],$$
(3)

where c_1 to c_{11} denote the proportion of individuals within each of the eleven classes defined in Table 3. Note that $\sum_{i=1}^{11} c_i = 1$. The Euclidean distance measure is then used to quantify the similarity between the feature vectors of two daily time use diagrams:

$$I(V, V') = 1 - \sqrt{\sum_{i=1}^{11} (c_i - c'_i)^2}.$$
 (4)

The value ranges between 0 and 1, with larger values indicating higher similarities between the two days.

It is worth noting that the similarity measure defined here is based on the proportion of individuals with different travel styles (i.e., eleven classes). Although the measure does not consider the detailed time use arrangement of individuals—such as how much time they spent on each type of activity—the measure enables an efficient way to compare the aggregate behavioral characteristics between any two observation days. In the next section, we demonstrate how the time use diagrams and the similarity measure can be used to uncover the rhythm of cities and the underlying space–time geographies of tourist activities.

Analysis and Results

Discover and Understand Representative Days

When tourists explore a destination city, their time use can be affected by a variety of factors, such as the spatial arrangement of tourist attractions, the

Figure 4. The time use diagram of Gangneung on 31 January 2018 by (A) organizing individuals randomly, (B) grouping individuals into eleven predefined classes, and (C) further performing a hierarchical clustering algorithm over individuals within each class based on a time use similarity metric. NAP = nighttime anchor point; NNAP = new nighttime anchor point.

deployment of transportation services, and how their visits to the city relate to prior and future travel plans, among others. Their collective behavioral patterns form the rhythm and signature of a city. The data set used in this study allows us to examine and compare tourists' time use across Gangneung, Jeonju, and Chuncheon. To accomplish this, an essential step is to identify those representative days when tourists tended to show more regular patterns compared to days when tourists exhibited unique characteristics.

Using the similarity measure defined earlier, we compute the day-to-day similarity of the time use diagrams of each city, which is presented as a similarity matrix in Figure 5. Grids with lighter colors represent higher similarities between the corresponding

Xu et al.

Figure 5. The day-to-day similarity matrix of the three cities. The daily number of visitors in each city is also shown as a reference.

day pairs. Given a matrix, if a certain row (or column because the matrix is symmetric) is dominated by light colors, it means that the observation day is similar to the majority of other days in terms of the distribution of travelers by the eleven classes. If a row or column is dominated by dark colors, however, it suggests that travelers show more unique travel patterns, which could be caused by special events or other latent factors. For instance, in the matrix of Gangneung, there are a few notable dark stripes that match with the period of the 2018 WO (Figure 5A). Although the matrices look different across the three cities, one thing they share in common is that the majority of the rows or columns are dominated by light colors, which indicates the existence of representative days in these cities.

To identify these representative days, for each observation day k in a city, we compute its average similarity to other observation days:

$$E_{k} = \frac{1}{N} \sum_{j=1}^{N} I(V_{k}, V_{j}),$$
(5)

where N refers to the total number of days in the data set (N = 365).

In Figure 6, we present the frequency distribution of days by average similarity score (E) and overlay it with the cumulative probability distribution. It can be seen that the majority of days in the three cities have a large E. By further examining the cumulative probability distributions, we find that, for all three cities, the average similarity score of the top 75 percent of the days is above 0.75 (i.e., 0.77 for Gangneung, 0.82 for Jeonju, and 0.86 for Chuncheon). This suggests that for all three cities, the majority of observation days are similar to each other. Therefore, we use the 75th percentile as a benchmark to filter days that show more distinctive patterns. More specifically, for each city, we define the top 75 percent of days by average similarity score as representative days.

Following this definition, we compute the average proportion of individuals in the eleven classes during the representative days. This would reveal the general split of tourists with different travel styles. As shown in Table 4, tourists in the three cities are dominated by a few classes such as C1, C7, C9, and C11. These classes cover some typical types of travelers, such as those who were at NAP at the beginning and end of the day (C1), those who left the city from NAP during the day (C7), the newcomers (C9), and visitors with a brief stay (C11). Another interesting finding is that the percentages of travelers in C2 and C5 are very low in the three cities, which might suggest that overnight visitors tended not to switch their dwelling places.

Substantial differences are also observed across cities. For instance, in Chuncheon, the percentage of travelers in C1 (6.5 percent) is much lower than that of Gangnueng (17.7 percent) and Jeonju (23.3 percent). The proportion of travelers with a brief stay (C11) is significantly higher, however (79.9 percent). This reflects a unique characteristic of Chuncheon. It

Figure 6. Distribution of average similarity score (E) of observation days in the three cities.

Table 4. Average proportion of travelers in the eleven classes during representative days

	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11
Gangneung	17.7	0.91	1.16	0.36	0.12	0.40	18.1	2.17	15.7	5.87	37.5
Chuncheon	23.3 6.50	0.37	0.46	0.55	0.20	0.35	5.33	0.62	4.61	1.82	25.6 79.9

also suggests that cities can be very different in the ways they attract visitors and the spatiotemporal organizations of tourist activities.

To provide more context into the time allocation of tourists, we select one of the representative days (15 May 2018) and visualize the time use diagram of the three cities. From a visual perspective, the diagrams of Gangneung (Figure 7A) and Jeonju (Figure 7B) look similar. There are many travelers (in C1) who stayed in the cities through the whole day. Some visitors left the cities during the day and mostly in the morning (C7). 15 May 2018 also marks the first day of many travelers to the two cities. Interestingly, some of them headed to the NAPs on arrival (C9), whereas others were still at other places or traveling around late at night (C10). The comparison suggests that the diagrams can be a powerful tool for hypothesis formulation and testing. For instance, tourism sectors and decision makers could leverage the diagrams to further explore the places visited by travelers in C9 and C10. This might shed light on tourists' preferences in hotel location selection (C9) or reveal nighttime attractions for visitors (C10).

As discussed previously, Chuncheon is dominated by temporary visitors (e.g., C11). This finding is reaffirmed by looking at the time use diagram in Figure 7C. Besides illustrating the large share of such visitors (C11), the diagram reveals that most of them stayed in the city for a very short period of time, usually a few hours, or even less. Again, it suggests that the time use diagram is a useful tool that enables the investigation of tourist time use in cities, both visually and quantitatively.

Transform the Time Use Diagram from Individual to Time-Oriented Perspective

The time use diagram enables an individual-oriented perspective of cities by revealing travelers with different time use characteristics. In the meantime, we are also interested in understanding the proportion of individuals participating in different activities at any given time point. The time use diagrams can be easily adjusted to such a time-oriented perspective. Given each representative day in a city, we calculate the percentage of individuals in each activity category once every five minutes. We then compute the average proportion of individuals by time and activity category across all representative days. The results-what we call the time-activity diagrams shown in Figure 8—illustrate the average proportions of individuals by activity category and how they change over time. Because NNAPs are rare cases in this study, we combine this category with NAP when visualizing the results (renamed (N)NAP).

As shown in Figure 8A, the proportion of individuals belonging to OUT is stable over time in

Figure 7. The daily time-use diagram of (A) Jeonju, (B) Gangneung, and (C) Chuncheon on 15 May 2018. NAP = nighttime anchor point; NNAP = new nighttime anchor point.

Gangneung (around 0.6). This indicates that on an average representative day—if we use the travelers who were observed at least once in Gangneung as a base—the proportion of travelers who were outside of the city tended to remain constant over time. That means on a representative day, the visitors who entered or left the city tended to balance with each other, a finding that does not seem too surprising. If compared with Jeonju (Figure 8B), however, we can see that the overall proportion of such individuals is around 0.5, which is lower than that of Gangneung (0.6). The comparison indicates that Gangneung has a higher "metabolic rate"—the pace at which a city absorbs and emits travelers. An equivalent expression is that more tourists tended to stay overnight in Jeonju than in Gangneung.

Figure 8. The time–activity diagrams of (A) Jeonju, (B) Gangneung, and (C) Chuncheon on an average representative day. NAP = nighttime anchor point; NNAP = new nighttime anchor point.

The other three categories ((N)NAP, OTHERS, TRAVEL) reflect intraurban activities. As shown in Figure 8A, the proportion of individuals belonging to (N)NAP started to drop after 6 a.m. and gradually increased in the evening. Daytime and early evening mark the periods when tourists actively engaged in travels and activities. Similar patterns are observed in Jeonju (Figure 8B). Different from the time use diagram, the time–activity diagram is powerful in revealing the time periods when people were mostly observed at their dwelling places, traveling, or at other locations such as scenic spots.

Given prior knowledge of Chuncheon, we would expect a special time–activity diagram. As shown in Figure 8C, the diagram is mainly black, which suggests a very high metabolic rate of the city. Few people stayed overnight and many visitors had a brief stopover. Most of their activities occurred during the daytime, with the peak around 2 p.m. Again, the results in this section suggest that cities can be different in terms of the rhythms of tourist activities. The two types of diagrams could complement each other in portraying cities from both individual-oriented (time use diagram) and time-oriented perspectives (time–activity diagram).

Time Allocation of Travelers and Spatial Patterns of Activities

Whereas cities during representative days have been clearly portrayed through the two types of diagrams, the time allocation of individual travelers has not been measured quantitatively. In this section, we examine how travelers allocate their time to different types of activities. Because travelers in the three cities are dominated by a few classes such as C1, C7, C9, and C11, in this analysis we only focus on these four types of travelers. Note that for C1, we have further split travelers who stayed in a city for the whole day and those who spent part of their time in a city. We name these two subgroups C1-full and C1-partial. For each of these five groups (C1-full, C1-partial, C7, C9, C11), we compute individuals' time allocation to activity categories—NAP, OTHERS, TRAVEL, and OUT—and examine their distribution patterns.

In Figure 9, we present the results for the five groups and three cities. Each row maps one city and each column corresponds to one traveler group. The error plots illustrate the mean and standard deviation of time that an individual spent on the activity, and the violin plots show the underlying distributions. By comparing the same group across cities, we find that they show very similar distribution patterns, despite large interpersonal variations. For instance, for travelers who stayed in a city for a whole day (C1-full), on average they spent sixteen to eighteen hours at NAPs and four to five hours traveling or moving around. The results suggest that tourists spent the majority of their time at an NAP, locations that are highly likely to be their dwelling places. Regarding the time spent on TRAVEL, it can be a combination of time spent on regular trips (e.g., heading somewhere through bus, taxi, or other transportation modes) and exploration of the city (e.g., walking tours). That means that tourists tended to experience more around where they live or sense a city "in motion." Very limited time-usually one or two hours—was spent by travelers on other

Figure 9. Distributions of individual time allocation to different activities for the five traveler groups in the three cities. NAP = nighttime anchor point.

activity locations (OTHERS), although they could be tourist attractions in cities. For C1-partial, C7, and C9, tourists' time allocation at NAP and intraurban movements (TRAVEL) were partially replaced by time spent out of the city. Because C7 and C9 are very likely to be last-day and first-day visitors to a city, it is reasonable that they spent even less time on other activity locations (OTHERS) than C1-full and C1-partial. On average, travelers in C11—those who had a brief stopover in a city—spent more time on OTHERS than other groups. It is likely that these travelers had clear purposes visiting particular places when coming to cities, and most of these travelers would stay in a city for less than four hours.

We next visualize the spatial patterns of these activities for selected traveler groups. Figure 10A shows the likelihood that each MBS location is used as NAP for travelers who stayed in Gangneung for a whole day (C1-full). The probability is calculated by counting the number of times each location is identified as NAP during the representative days, normalized by the total frequency of all locations. The map shows that the central part of the city and certain areas along the beach are likely to be chosen by travelers as dwelling places.³ When looking at travelers' activities beyond NAPs (OTHERS), we find that these activities are also pronounced in central Gangneung but tended to cover almost all parts of the city (Figure 10B). For full-day visitors in Jeonju, popular areas of dwelling places (Figure 10C) and other activities (Figure 10D) generally point to the same set of places. These places cover some notable tourism attractions such as the Jeonju Hanok Village, the two universities, and Deokjin Park. Similar to what we find in Gangneung, the spatial choices of OTHERS are more widely spread.

For Chuncheon, the spatial choices of NAP and OTHERS for full-day travelers are mainly distributed in the city center and the Elysian Ski Resort (Figure 10E and Figure 10F). Because travelers who made a brief stopover (C11) represent the majority of the city's visitors, we also visualize the spatial distribution of their activities (Figure 10G). It turns out that the spatial choices of their activities are very different from those of full-day travelers. In particular, the Jade Garden, Elysian Ski Resort, and Nami Island account for a large proportion of total visits.

Tourist Dynamics during Special Events: An Example of the Winter Olympics in Gangneung

The results presented so far have demonstrated the effectiveness of the computational framework in

Figure 10. The intensity of activities for selected traveler groups: (A), (B) NAP and OTHERS of C1-full in Gangneung; (C), (D) NAP and OTHERS of C1-full in Jeonju; (E), (F) NAP and OTHERS of C1-full in Chuncheon; (G) OTHERS of C11 in Chuncheon. The Thiessen polygons are generated based on the locations of mobile base stations as approximations of their service areas. NAP = nighttime anchor point.

revealing tourist dynamics during representative days. In this section, we employ the framework to further explore tourist time use under special events, using Gangneung during the WO as an example. Gangneung is one of the cities in South Korea that hosted the WO between 9 and 25 February 2018. The event resulted in a surge of visits to the city during this period (Figure 1B). By examining the day-to-day similarity matrix of the city (Figure 5A), we find three distinctive periods around the WO:

- 16 January 2018 to 8 February 2018 (before WO).
- 9 February 2018 to 25 February 2018 (during WO).
- 26 February 2018 (the day after the closing ceremony of WO).

The first two correspond to periods before and during the WO. According to the similarity matrix in Figure 5A, the observation days within these two periods are much more similar to each other than to other days throughout the year. Regarding 26 February 2018, the dark stripe associated with the date (Figure 5A) suggests that tourists show unique activity patterns right after the WO. The result indicates notable variations of tourist behavioral patterns across the three periods. It also motivates us to further examine tourist time use during the three stages of this megaevent.

Table 5 summarizes the average proportion of travelers in the eleven classes during the three periods. Similar to representative days, travelers are still dominated by the following four classes: C1, C7, C9, and C11. Substantial differences are observed across the periods, however. Before the WO, the city was observed with a large proportion of overnight stayers (C1, 39 percent) and incoming visitors (C9, 17.1 percent). During the WO, the shares of C1 and C9 dropped, but there were more outgoing (C7, 18.5 percent) and temporary visitors (C11, 28.5 percent). On 26 February 2018, the day right after the closing ceremonies of the WO, a large proportion of visitors left the city (C7, 62.9 percent; C8, 10.7 percent). The results suggest notable transitions of tourist activity patterns across the three periods.

To better understand the time use of tourists in the three periods, we select one observation day

	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11
Before	39.3	0.85	2.47	0.82	0.24	0.34	12.3	0.96	17.1	5.11	20.4
During	21.8	0.60	6.68	1.27	0.32	1.91	18.5	3.49	8.06	8.92	28.5
After	6.64	0.13	1.11	0.41	0.00	0.41	62.9	10.7	3.46	0.55	13.7

Table 5. Average proportion of travelers in the eleven classes in Gangneung before (16 January–8 February 2018), during
(9 February–25 February 2018), and after (26 February 2018) the Winter Olympics

from each period and visualize their time use (Figure 11) and time–activity diagrams (Figure 12):

- 5 February 2018.
- 25 February 2018.
- 26 February 2018.

On 5 February 2018, the visitors to Gangneung had diverse time use characteristics (Figure 11A). The city was observed with a mixing of overnight stayers, incoming visitors, outgoing visitors, and temporary stayers. Their time allocation also varies notably. From the perspective of time-activity diagrams (Figure 12A), the intraurban movements and activities of tourists started to increase after 7 a.m. and the city remained active during the daytime. The proportion of visitors who were out of the city (OUT) was roughly the same at the beginning and end of the day (around 0.4). On the one hand, this suggests that the city tended to maintain its attractiveness by balancing the incoming and outgoing visitors. On the other hand, it shows that the city has a lower "metabolic rate" than the level observed during representative days (Figure 8A). This indicates that the WO has a positive impact on the city's attractiveness.

25 February 2018 was the last day of the 2018 WO, and we observe interesting patterns of tourist time use. As shown in Figure 11B, there are clear synchronizations of tourist movements (TRAVEL) and activities (OTHERS) during particular periods of the day. Three blue stripes in the diagram (Figure 11B) suggest that massive amounts of movements were observed in the morning, around noon, and in the late afternoon. Meanwhile, most of the visitors were conducting "out-of-home" activities (OTHERS) in between. These findings are reaffirmed by looking at the time-activity diagram, where local maxima of tourist movements (TRAVEL) were observed at 8:40, 12:00, and 16:00, respectively (circles in Figure 12B). From the diagram we can see that the proportion of visitors out of Gangneung (OUT) reaches its

maximum value at the end of the day, which indicates that more tourists left than came to the city on 25 February 2018.

26 February 2018 was the first day after the closing ceremony of the WO. As illustrated in Figure 11C, a significant proportion of visitors left the city during the day (C7, 62.9 percent; C8, 10.7 percent), and most of them departed in the morning. The activity diagram clearly shows that the city was constantly losing travelers in the day especially before noon (Figure 12C). Overnight stayers accounted for only about 10 percent of the total visitors. The results in this section demonstrate the effectiveness of the framework for revealing tourist time use during special events, as well as the transitions of their activity patterns across the three periods.

To validate our results, we revisit the three local maxima of tourist movements identified on 25 February 2018 (Figure 12B) and examine the spatial patterns of tourist activities between (1) 8:40 and 12:00 and (2) 12:00 and 16:30. We hypothesize that the massive amounts of synchronized travel around 8:40, 12:00, and 16:00 are affected by special events of the WO. By visualizing the spatial patterns of tourist activities (OTHERS) between 8:40 and 12:00, we find that they were mainly concentrated in the city center, especially around the Gangneung Olympic Park (Figure 13A). A close look at the satellite image suggests that the most popular place is around the Gangneung Ice Arena (Figure 13B). In the afternoon between 12:00 and 16:30, tourist visits were concentrated in the same area (Figure 13C), but the place with the highest visitation frequency switched to the Gangneung Hockey Center (Figure 13D).

We compare our findings with the calendar events of the 2018 WO. Three events were held in Gangneung on 25 February 2018: the exhibition gala of figure skating at the Gangneung Ice Arena (started at 9:30), the women's tournament gold medal game of curling at Gangneung Curling Center (started at 9:05), and the men's tournament gold medal game of ice hockey at Gangneung Hockey Center (started at

Figure 11. Time use diagrams of Gangneung on (A) 5 February 2018; (B) 25 February 2018; and (C) 26 February 2018. NAP = nighttime anchor point; NNAP = new nighttime anchor point.

13:10). The schedules of these events and the associated venues generally match with the spatiotemporal patterns in Figure 11B, Figure 12B, and Figure 13. The results demonstrate the feasibility of the proposed computational framework and the robustness of the findings. It also suggests the reliability of mobile phone data in capturing fine-grained aspects of tourist behaviors in cities.

Summary

In this research, we develop a computational framework to derive, analyze, and visualize tourist time use in cities. It provides a new perspective that connects time geography and tourism through the use of spatiotemporal big data. We argue that the tourism geography of cities can be better understood

Figure 12. The time–activity diagrams of Gangneung on (A) 5 February 2018; (B) 25 February 2018; and (C) 26 February 2018. NAP = nighttime anchor point; NNAP = new nighttime anchor point.

as mobility observations of tourists become both massive and granular. By applying the proposed approaches over a fine-grained mobile phone data set in South Korea, we perform a comparative analysis across three different cities (Gangneung, Jeonju, and Chuncheon). The results demonstrate that the framework is effective in revealing the heterogeneity of tourist time use within cities, the interurban variations, and how tourists behave during routine days versus special events.

We first develop an anchor point extraction approach, which allows us to convert each individual's cellphone trajectory into a sequence of stays at meaningful activity locations. A semantic labeling process is followed to annotate each individual's stays or movements into one of the five categories (NAP, NNAP, OTHERS, TRAVEL, and OUT). The semantics derived in this step can indicate travelers' dwelling places in a city, when they tended to travel, where their activities occurred, and when they were outside of a city. Such information is then used to construct the daily time use diagrams of individuals. The diagrams carry the semantics of tourist activities while preserving the order in which they occurred in time.

After the daily time use diagrams of individuals are derived, we aggregate them by each observation day to form the daily time use diagrams of a city. Because individuals are organized randomly in the aggregated diagrams, to convey meaningful information about a city, we first perform a coarse segmentation of individuals based on the eleven predefined classes that distinguish different travel styles. A hierarchical clustering algorithm based on a time use similarity metric is then performed within each class, such that individuals with similar time use characteristics are grouped together. The resulting diagrams turn out to be a powerful tool for visualizing and analyzing the time use of individual travelers, interpersonal variations, and collective patterns that form the signature of a city.

We then process the full data set to generate the daily time use diagrams of three cities through the data collection period (365 days). By introducing a day-to-day similarity measure, we are able to identify the so-called representative days in each city when tourists tended to show more regular patterns, compared to days when they exhibited unique characteristics. By further investigating tourist time use in the three cities during representative days, we find that Gangneung and Jeonju are more similar to each other, whereas Chuncheon shows more distinctive patterns. The results suggest that the computational framework can be useful in capturing the similarities and differences of tourist time use across cities. Following this analysis, we introduce another visualization layoutthe time-activity diagram-to illustrate the proportion of individual travelers by activity category in a city and its evolution over time. The two types of diagrams (time use diagram and time-activity diagram) complement each other in portraying the pulses and rhythm of tourist activities in cities.

Next, we select individuals with dominant travel styles and examine the time allocation and spatial patterns of their activities. We find that although tourists organized time differently across cities, their time allocation patterns, when controlling the traveler group, are highly similar. For example, on average, full-day visitors (C1-full) spent sixteen to eighteen

Figure 13. Intensity of tourist activities (OTHERS) in Gangneung and zoom-in view of the popular area through satellite images on 25 February 2018: (A), (B) time period of 8:40 to 12:00; (C), (D) time period of 12:00 to 16:30.

hours at NAPs and four to five hours traveling or moving around, a finding that is universal across the three cities. By mapping the location footprints of selected traveler groups, we find that cities show different spatial structures of tourist activities. Within the same city, however, the location choice and preference can vary among different traveler groups (e.g., full-day vs. temporary visitors in Chuncheon). Finally, we employ the framework to explore tourist time use during special events, using Gangneung during the WO as an example. Three periods are selected to analyze the time use of tourists before, during, and after the WO. The results suggest notable transitions of tourist activity patterns across the three stages of this megaevent. A close examination of tourist activities on 25 February 2018 is performed and the results are validated by comparing the spatiotemporal patterns with the WO calendar of events. The validation demonstrates the robustness of our findings and the efficacy of the proposed computational framework. It also suggests fine-grained mobile phone data as a promising resource to advance geography and tourism research.

Discussion

We want to discuss the broad implications of this study. Traditional studies on human mobility mainly relied on surveys and questionnaires. Despite considerable costs in data acquisition, they usually contain detailed information of travelers, which is often regarded as "ground truth" for producing rigorous research outcomes. This ideology is, however, disrupted by the emergence of big data (e.g., mobile phone data), which were not intended for (geographical) research when they were collected. As a result, the findings derived from big data are more difficult to validate due to the absence of ground truth. In this study, we demonstrate that fine-grained mobile phone data can be leveraged to produce novel insights on tourist activities at an unprecedented spatiotemporal resolution. There are still issues in the data, such as location uncertainty caused by positional inaccuracy (Goodchild 1998; Isaacman et al. 2012; Csáji et al. 2013) and lack of contextual information on travelers (e.g., activity purpose, travel mode). Nevertheless, we think the framework and results are already helpful to decision making and spatial planning, especially when they are used as tools for hypothesis formulation and follow-up studies. For instance, the methods developed and used in this study (time use diagram, time-activity diagram, spatial mapping) can be combined to form smart dashboards for interactive data exploration. Many meaningful questions can be asked. For example, who are the temporary visitors in a city? Why do they come to visit but choose not to stay overnight? What are the places where tourist activities proliferate at night, and what do they indicate about the nighttime economy (Cohen and Hopkins 2019)? Why are activities of some visitors fragmented, and what are the implications for locationbased services and recommendations? Some of these questions can be better addressed by conducting surveys with tourists. The design of surveys, and when and where they should be conducted, can be guided and informed by the insights derived from the smart dashboard. In other words, we think that big and small data are not two sides of a coin but can be integrated in organic ways to facilitate geography and tourism research.

The computational framework can also be extended to study time use of large urban populations (e.g., residents). For instance, MSD could capture the whereabouts of cellphone users at a fine spatiotemporal resolution (Janecek et al. 2015). Such information can be used to infer individuals' meaningful activity locations (e.g., home, workplace, favorite restaurants) and time allocation at these places. Feeding these behavioral patterns into the time use diagram would shed light on the rhythm and paces of urban life (Reades, Calabrese, and Ratti 2009; Yuan and Raubal 2012; Ahas et al. 2015; B. Y. Chen et al. 2018; Thulin, Vilhelmson, and Schwanen 2020). Many profound issues of cities can be better investigated. For example, the framework can be used to understand the time use of different traveler or sociodemographic groups (Yuan, Raubal, and Liu 2012; Xu et al. 2018) and the implications for inequality, population aging, and urban planning. How residents behave during natural disasters (Lu, Bengtsson, and Holme 2012) or public health emergencies (e.g., COVID-19; Kraemer et al. 2020) can also be visualized and analyzed through the framework to inform policy and decision making. We think this research is an active response to the emerging discussion on smart spaces and places in the geography community (Bian 2020), and the computational framework enables a big data and time-oriented perspective to "perceive, analyze, and visualize spaces and places" (Bian 2020, 335). Of course, there are many challenges to overcome if the framework is applied on massive urban populations. For instance, there is a question of how to address the increasing computational cost of segmenting and clustering individuals in the time use diagram and how to design appropriate time use similarity metrics for given application purposes. These are important research questions and the future directions we aim to pursue. In the meantime, we should bear in mind that mobile phone data, especially individual-level observations, could raise public concerns about people's privacy. Ensuring their proper use with appropriate data protection mechanisms is important for future research (Oliver et al. 2020).

We want to point out a few limitations of this research. Although the resolution of the mobile phone data set is adequate for quantifying tourist time use, uncertainties still exist in the data. From the spatial perspective, the MBSs are unevenly distributed in cities, and their densities are usually higher in densely populated areas. Thus, the mobile phone observations would have lower spatial resolutions where MBSs are sparsely distributed. This could affect the estimation and interpretation of activity semantics. For instance, it is possible that some short-range movements of phone users in certain areas (e.g., where MBS densities are low) were not captured and thus represented as stay activities in the time use diagrams. For such cases, the meaning of "stay" needs to be interpreted with caution. From a temporal perspective, the data set is able to document all of the stay activities of individuals. Their movement traces between consecutive stays were not recorded, however. This would have an impact on the estimation of individual time spent within or outside of a city. Given an individual, the time associated with intraurban activities in a city (e.g., NAP, NNAP, OTHERS, TRAVEL), according to our definition, started when the first stay activity was observed (e.g., 9 a.m.). The proportion of time before that was identified as OUT. It is likely, though, that the individual was already in the city before 9 a.m. (e.g., took a train from a neighboring city at 8 a.m. and headed to the first destination in the city). In other words, the data set cannot precisely capture when an individual physically entered one city from another. Thus, our framework would overestimate the time an individual was observed OUT, and an individual's time within a city is interpreted in this study as the period between his or her first and last stay activities. Nevertheless, we think the insights derived from the data set are a notable contribution to the literature of geography and tourism. The computational framework can be applied to compatible data sets to advance time geography, tourism, and urban mobility research.

Acknowledgments

The authors thank Dr. Ling Bian and the reviewers for their valuable comments and suggestions that improved this article. We sincerely thank Korea Tourism Organization (particularly to Tourism Big Data Center) for their full support in initiating the project and conducting the data collection.

Funding

This article and research project (Project Account Code: 5-ZJLW) are jointly funded by Research Grant of Hospitality and Tourism Research Centre (HTRC Grant) of the School of Hotel and Tourism Management and PTeC (Project Code P18-0015) at The Hong Kong Polytechnic University, and the Hong Kong Polytechnic University Start-Up Grant (Grant no. 1-BE0J).

Notes

- 1. The cellular operator has differentiated international travelers from local residents. The fundamental idea is that the mobile data used in this research refer to inbound tourists who have used mobile roaming services in South Korea.
- 2. Defined as the number of phone users with at least one record during the specified day.
- 3. Note that individual activities (e.g., NAP, OTHERS) are identified at the level of activity anchor points, which could consist of one or several MBS locations. This introduces an issue when we want to map the density of activities at the level of MBS. To simplify the mapping process, for each activity anchor (of each individual), we identify its representative MBS, defined as the MBS in the anchor point with the highest stay duration. The activity is always allocated to the representative MBS when counting the frequency of activities.

ORCID

Yang Xu (http://orcid.org/0000-0003-3898-022X

References

- Ahas, R., A. Aasa, U. Mark, T. Pae, and A. Kull. 2007. Seasonal tourism spaces in Estonia: Case study with mobile positioning data. *Tourism Management* 28 (3):898–910. doi: 10.1016/j.tourman.2006.05.010.
- Ahas, R., A. Aasa, Y. Yuan, M. Raubal, Z. Smoreda, Y. Liu, C. Ziemlicki, M. Tiru, and M. Zook. 2015. Everyday space-time geographies: Using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn. International Journal of Geographical Information Science 29 (11):2017–39. doi: 10.1080/13658816.2015.1063151.
- Bauder, M., and T. Freytag. 2015. Visitor mobility in the city and the effects of travel preparation. *Tourism*

Geographies 17 (5):682–700. doi: 10.1080/14616688. 2015.1053971.

- Becker, R., R. Cáceres, K. Hanson, S. Isaacman, J. M. Loh, M. Martonosi, J. Rowland, S. Urbanek, A. Varshavsky, and C. Volinsky. 2013. Human mobility characterization from cellular network data. *Communications of the ACM* 56 (1):74–82. doi: 10. 1145/2398356.2398375.
- Belyi, A., I. Bojic, S. Sobolevsky, I. Sitko, B. Hawelka, L. Rudikova, A. Kurbatski, and C. Ratti. 2017. Global multi-layer network of human mobility. *International Journal of Geographical Information Science: IJGIS* 31 (7):1381–402. doi: 10.1080/13658816.2017.1301455.
- Bian, L. 2020. Introduction: Smart spaces and places. Annals of the American Association of Geographers 110 (2):335–38. doi: 10.1080/24694452.2019.1702810.
- Birenboim, A., S. Anton-Clavé, A. P. Russo, and N. Shoval. 2013. Temporal activity patterns of theme park visitors. *Tourism Geographies* 15 (4):601–19. doi: 10.1080/14616688.2012.762540.
- Birenboim, A., and N. Shoval. 2016. Mobility research in the age of the smartphone. *Annals of the American Association of Geographers* 106 (2):283–91. doi: 10. 1080/00045608.2015.1100058.
- Blondel, V. D., A. Decuyper, and G. Krings. 2015. A survey of results on mobile phone datasets analysis. *EPJ Data Science* 4 (1):10. doi: 10.1140/epjds/s13688-015-0046-0.
- Calderwood, L., and M. Soshkin. 2019. The travel & tourism competitiveness report 2019. World Economic Forum. Accessed February 10, 2020. http://www3. weforum.org/docs/WEF_TTCR_2019. pdf.
- Chen, B. Y., Y. Wang, D. Wang, Q. Li, W. H. Lam, and S.-L. Shaw. 2018. Understanding the impacts of human mobility on accessibility using massive mobile phone tracking data. Annals of the American Association of Geographers 108 (4):1115–33. doi: 10. 1080/24694452.2017.1411244.
- Chen, C., J. Ma, Y. Susilo, Y. Liu, and M. Wang. 2016. The promises of big data and small data for travel behavior (aka human mobility) analysis. *Transportation Research. Part C, Emerging Technologies* 68:285–99. doi: 10.1016/j.trc.2016.04.005.
- Cohen, S. A., and D. Hopkins. 2019. Autonomous vehicles and the future of urban tourism. Annals of *Tourism Research* 74:33–42. doi: 10.1016/j.annals. 2018.10.009.
- Csáji, B. C., A. Browet, V. A. Traag, J.-C. Delvenne, E. Huens, P. Van Dooren, Z. Smoreda, and V. D. Blondel. 2013. Exploring the mobility of mobile phone users. *Physica A: Statistical Mechanics and Its Applications* 392 (6):1459–73. doi: 10.1016/j.physa. 2012.11.040.
- De Cantis, S., M. Ferrante, A. Kahani, and N. Shoval. 2016. Cruise passengers' behavior at the destination: Investigation using GPS technology. *Tourism Management* 52:133–50. doi: 10.1016/j.tourman.2015. 06.018.
- Dijst, M. 1999. Two-earner families and their action spaces: A case study of two Dutch communities. *GeoJournal* 48 (3):195–206. doi: 10.1023/ A:1007031809319.

- East, D., P. Osborne, S. Kemp, and T. Woodfine. 2017. Combining GPS & survey data improves understanding of visitor behaviour. *Tourism Management* 61:307–20. doi: 10.1016/j.tourman.2017.02.021.
- Edwards, D., and T. Griffin. 2013. Understanding tourists' spatial behaviour: GPS tracking as an aid to sustainable destination management. *Journal of Sustainable Tourism* 21 (4):580–95. doi: 10.1080/09669582.2013. 776063.
- Ellegård, K. 1999. A time-geographical approach to the study of everyday life of individuals—A challenge of complexity. *GeoJournal* 48 (3):167–75. doi: 10.1023/A:1007071407502.
- Franklin, A., and M. Crang. 2001. The trouble with tourism and travel theory? *Tourist Studies* 1 (1):5–22.
- Gibson, C. 2008. Locating geographies of tourism. Progress in Human Geography 32 (3):407–22. doi: 10. 1177/0309132507086877.
- Gonzalez, M. C., C. A. Hidalgo, and A.-L. Barabasi. 2008. Understanding individual human mobility patterns. *Nature* 453 (7196):779–82. doi: 10.1038/ nature06958.
- Goodchild, M. F. 1998. Uncertainty: The Achilles heel of GIS. Geo Info Systems 8 (11):50–52.
- Hägerstrand, T. 1970. What about people in regional science? Papers of the Regional Science Association 24 (1):6–21. doi: 10.1007/BF01936872.
- Hall, C. M. 2005a. Reconsidering the geography of tourism and contemporary mobility. *Geographical Research* 43 (2):125–39. doi: 10.1111/j.1745-5871.2005.00308.x.
- Hall, C. M. 2005b. Tourism: Rethinking the social science of mobility. Essex, England: Pearson Education.
- Hall, C. M. 2013. Framing tourism geography: Notes from the underground. Annals of Tourism Research 43:601–23.
- Hall, C. M., and S. J. Page. 2014. The geography of tourism and recreation: Environment, place and space. London and New York: Routledge.
- Huang, X.-T., and B.-H. Wu. 2012. Intra-attraction tourist spatial-temporal behaviour patterns. *Tourism Geographies* 14 (4):625–45. doi: 10.1080/14616688. 2012.647322.
- Isaacman, S., R. Becker, R. Cáceres, M. Martonosi, J. Rowland, A. Varshavsky, and W. Willinger. 2012. Human mobility modeling at metropolitan scales. In Proceedings of the 10th international conference on mobile systems, applications, and services, ed. N. Davies, S. Seshan, and L. Zhong, 239–52. New York: ACM. doi: 10.1145/2307636.2307659.
- Janecek, A., D. Valerio, K. A. Hummel, F. Ricciato, and H. Hlavacs. 2015. The cellular network as a sensor: From mobile phone data to real-time road traffic monitoring. IEEE Transactions on Intelligent Transportation Systems 16 (5):2551–72. doi: 10.1109/ TITS.2015.2413215.
- Keeler, B. L., S. A. Wood, S. Polasky, C. Kling, C. T. Filstrup, and J. A. Downing. 2015. Recreational demand for clean water: Evidence from geotagged photographs by visitors to lakes. Frontiers in Ecology and the Environment 13 (2):76–81. doi: 10.1890/ 140124.

- Kim, Y., C.-K. Kim, D. K. Lee, H.-W. Lee, and R. I. T. Andrada. 2019. Quantifying nature-based tourism in protected areas in developing countries by using social big data. *Tourism Management* 72:249–56. doi: 10.1016/j.tourman.2018.12.005.
- Kraemer, M. U., C.-H. Yang, B. Gutierrez, C.-H. Wu, B. Klein, D. M. Pigott, L. Du Plessis, N. R. Faria, R. Li, W. P. Hanage, et al. 2020. The effect of human mobility and control measures on the COVID-19 epidemic in China. *Science* 368 (6490):493–97. doi: 10. 1126/science.abb4218.
- Kuusik, A., M. Tiru, R. Ahas, and U. Varblane. 2011. Innovation in destination marketing: The use of passive mobile positioning for the segmentation of repeat visitors in Estonia. *Baltic Journal of Management* 6 (3):378–99. doi: 10.1108/17465261111168000.
- Li, J., L. Xu, L. Tang, S. Wang, and L. Li. 2018. Big data in tourism research: A literature review. *Tourism Management* 68:301–23. doi: 10.1016/j.tourman.2018. 03.009.
- Li, M., S. Gao, F. Lu, and H. Zhang. 2019. Reconstruction of human movement trajectories from large-scale lowfrequency mobile phone data. *Computers, Environment* and Urban Systems 77:101346. doi: 10.1016/j.compenvurbsys.2019.101346.
- Lo, I. S., B. McKercher, A. Lo, C. Cheung, and R. Law. 2011. Tourism and online photography. *Tourism Management* 32 (4):725–31. doi: 10.1016/j.tourman. 2010.06.001.
- Lu, X., L. Bengtsson, and P. Holme. 2012. Predictability of population displacement after the 2010 Haiti earthquake. Proceedings of the National Academy of Sciences of the United States of America 109 (29):11576–81. doi: 10.1073/pnas.1203882109.
- Lu, X., C. Wang, J.-M. Yang, Y. Pang, and L. Zhang. 2010. Photo2trip: Generating travel routes from geotagged photos for trip planning. In Proceedings of the 18th ACM international conference on multimedia, ed. A. del Bimbo, S.-F. Chang, A. Smeulders, 143–52. New York: ACM.
- McKercher, B., N. Shoval, E. Ng, and A. Birenboim. 2012. First and repeat visitor behaviour: GPS tracking and GIS analysis in Hong Kong. *Tourism Geographies* 14 (1):147–61. doi: 10.1080/14616688.2011.598542.
- Oliver, N., B. Lepri, H. Sterly, R. Lambiotte, S. Delataille, M. De Nadai, E. Letouzé, A. A. Salah, R. Benjamins, C. Cattuto, et al. 2020. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. *Science Advances* 6 (23):eabc0764. doi:10.1126/sciadv.abc0764.
- Pettersson, R., and M. Zillinger. 2011. Time and space in event behaviour: Tracking visitors by GPS. *Tourism Geographies* 13 (1):1–20. doi: 10.1080/14616688.2010. 529932.
- Pultar, E., and M. Raubal. 2010. Progressive tourism: Integrating social, transportation, and data networks. In *Tourism informatics: Visual travel recommender systems, social communities, and user interface design*, 145–59. London: IGI Global.
- Reades, J., F. Calabrese, and C. Ratti. 2009. Eigenplaces: Analysing cities using the space-time structure of the mobile phone network. *Environment and Planning B:*

Planning and Design 36 (5):824–36. doi: 10.1068/ b34133t.

- Salas-Olmedo, M. H., B. Moya-Gómez, J. C. García-Palomares, and J. Gutiérrez. 2018. Tourists' digital footprint in cities: Comparing big data sources. *Tourism Management* 66:13–25. doi: 10.1016/j.tourman.2017.11.001.
- Schönfelder, S., and K. W. Axhausen. 2003. Activity spaces: Measures of social exclusion? *Transport Policy* 10 (4):273–86. doi: 10.1016/j.tranpol.2003.07.002.
- Shoval, N., and R. Ahas. 2016. The use of tracking technologies in tourism research: The first decade. *Tourism Geographies* 18 (5):587–606. doi: 10.1080/ 14616688.2016.1214977.
- Shoval, N., B. McKercher, E. Ng, and A. Birenboim. 2011. Hotel location and tourist activity in cities. Annals of Tourism Research 38 (4):1594–612. doi: 10. 1016/j.annals.2011.02.007.
- Silm, S., and R. Ahas. 2014. Ethnic differences in activity spaces: A study of out-of-home nonemployment activities with mobile phone data. Annals of the Association of American Geographers 104 (3):542–59. doi: 10. 1080/00045608.2014.892362.
- Song, C., T. Koren, P. Wang, and A.-L. Barabási. 2010. Modelling the scaling properties of human mobility. *Nature Physics* 6 (10):818–23. doi: 10.1038/nphys1760.
- Tchetchik, A., A. Fleischer, and N. Shoval. 2009. Segmentation of visitors to a heritage site using highresolution time-space data. *Journal of Travel Research* 48 (2):216–29. doi: 10.1177/0047287509332307.
- Thulin, E., B. Vilhelmson, and T. Schwanen. 2020. Absent friends? Smartphones, mediated presence, and the recoupling of online social contact in everyday life. Annals of the American Association of Geographers 110 (1):166–83. doi: 10.1080/24694452.2019.1629868.
- Tiru, M., A. Kuusik, M.-L. Lamp, and R. Ahas. 2010. LBS in marketing and tourism management: Measuring destination loyalty with mobile positioning data. *Journal of Location Based Services* 4 (2):120–40. doi: 10.1080/17489725.2010.508752.
- Vu, H. Q., G. Li, R. Law, and B. H. Ye. 2015. Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. *Tourism Management* 46:222–32. doi: 10.1016/j.tourman.2014.07.003.
- Williams, S. 1998. Tourism geography. Psychology Press.
- Wood, S. A., A. D. Guerry, J. M. Silver, and M. Lacayo. 2013. Using social media to quantify nature-based tourism and recreation. *Scientific Reports* 3:2976. doi: 10.1038/srep02976.
- Xu, Y., A. Belyi, I. Bojic, and C. Ratti. 2017. How friends share urban space: An exploratory spatiotemporal analysis using mobile phone data. *Transactions in GIS* 21 (3):468–87. doi: 10.1111/tgis.12285.
- Xu, Y., A. Belyi, I. Bojic, and C. Ratti. 2018. Human mobility and socioeconomic status: Analysis of Singapore and Boston. Computers, Environment and Urban Systems 72:51–67. doi: 10.1016/j.compenvurbsys.2018.04.001.
- Xu, Y., A. Belyi, P. Santi, and C. Ratti. 2019. Quantifying segregation in an integrated urban physical-social space. *Journal of the Royal Society, Interface* 16 (160):20190536. doi: 10.1098/rsif.2019.0536.

- Xu, Y., S.-L. Shaw, Z. Zhao, L. Yin, Z. Fang, and Q. Li. 2015. Understanding aggregate human mobility patterns using passive mobile phone location data: A home-based approach. *Transportation* 42 (4):625–46. doi: 10.1007/s11116-015-9597-y.
- Xu, Y., S.-L. Shaw, Z. Zhao, L. Yin, F. Lu, J. Chen, Z. Fang, and Q. Li. 2016. Another tale of two cities: Understanding human activity space using actively tracked cellphone location data. Annals of the American Association of Geographers 106 (2):489–502.
- Yan, L., D. Wang, S. Zhang, and D. Xie. 2019. Evaluating the multi-scale patterns of jobs-residence balance and commuting time-cost using cellular signaling data: A case study in Shanghai. *Transportation* 46 (3):777–92. doi: 10.1007/s11116-018-9894-3.
- Yuan, Y., and M. Raubal. 2012. Extracting dynamic urban mobility patterns from mobile phone data. In *International conference on geographic information science*, ed. N. Xiao, M.-P. Kwan, M. F. Goodchild, and S. Shekhar, 354–67. Berlin: Springer.
- Yuan, Y., and M. Raubal. 2016. Analyzing the distribution of human activity space from mobile phone usage: An individual and urban-oriented study. *International Journal of Geographical Information Science* 30 (8):1594–621. doi: 10.1080/13658816.2016.1143555.
- Yuan, Y., M. Raubal, and Y. Liu. 2012. Correlating mobile phone usage and travel behavior—A case study of Harbin, China. Computers, Environment and Urban Systems 36 (2):118–30. doi: 10.1016/j.compenvurbsys.2011.07.003.
- Zheng, Y.-T., Z.-J. Zha, and T.-S. Chua. 2012. Mining travel patterns from geotagged photos. ACM *Transactions on Intelligent Systems and Technology* 3 (3):1–18. doi: 10.1145/2168752.2168770.

YANG XU is an Assistant Professor in the Department of Land Surveying and Geo-Informatics at the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. E-mail: yang.ls.xu@polyu.edu.hk. His research interests include GIScience, human mobility, and urban informatics.

JINGYAN LI is a Research Assistant in the Department of Land Surveying and Geo-Informatics at the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. E-mail: jing-yan.li@connect.polyu.hk. Her research interests include GIScience, spatiotemporal data mining, and mobility science.

JIAYING XUE is a Research Assistant in the Department of Land Surveying and Geo-Informatics at the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. jiaying.xue@connect.polyu.hk. E-mail: Her research interests include urban mobility. GIScience, and spatial analysis.

SANGWON PARK is Associate Professor at the School of Hotel and Tourism Management, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. E-mail: sangwon.park@polyu.edu.hk. His research interests include tourism big data, information technology, and travel behavior.

OINGOUAN LI is a Professor in the Guangdong Key School Laboratory of Urban Informatics, of Architecture and Urban Planning, Shenzhen University, Shenzhen, China. E-mail: liqq@szu.edu.cn. His research interests include 3D and dynamic modeling in GIS; location-based services; surveying engineering; integration of GIS, GPS, and remote sensing; and intelligent transportation systems.