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Recent years have witnessed an increasing use of big data in mobility research. Such efforts have led to

many insights on the travel behavior and activity patterns of people. Despite these achievements, the data

veracity issue and its impact on the processes of knowledge discovery have seldom been discussed. In this

research, we investigate the veracity issue of mobile signaling data (MSD) when they are used to

characterize human mobility patterns. We first discuss the location uncertainty issues in MSD that would

hinder accurate estimations of human mobility patterns, followed by an examination of two existing methods

for addressing these issues (clustering-based method and time window–based method). We then propose a

new approach that can overcome some of the limitations of these two methods. By applying all three

methods to a large-scale mobile signaling data set, we find that the choice of preprocessing methods could

lead to changes in the data characteristics. Such changes, which are nontrivial, will further affect the

characterization and interpretation of human mobility patterns. By computing four mobility indicators

(number of origin–destination trips, number of activity locations, total stay time, and activity entropy) from

the outputs of the three methods, we illustrate their varying impacts on individual mobility estimations

relevant to location uncertainty issues. Our analysis results call for more attention to the veracity issue in

data-driven mobility research and its implications for replicability and reproducibility of geospatial research.

Key Words: human mobility, mobile phone data, uncertainty, veracity.

B
ig data is no longer a buzzword but something

that truly affects how academic research is per-

formed. With the fast development of informa-

tion and location-aware technologies, the types and

sizes of data suitable for large-scale geographical

analysis are augmented on a daily basis, bringing

new questions to the field or introducing alternatives

to classical problems. As we celebrate the increasing

volume and velocity of big data, one crucial question

that remains to be better addressed is veracity. As

we bring data on board, process, and then analyze

them, how much can we trust the results given the

methodologies that are used?
Taking mobility research as an example, various

approaches have been proposed to derive origin–des-

tination (OD) trips from movement data sets.

Although the definition of OD trips seems to be

simple, extracting them from particular data sources

could introduce errors and bias. For instance, OD

trips can be under- or overestimated from travel sur-

veys due to self-report errors (Stopher and Greaves

2007; Chen et al. 2010). Some studies extract OD

trips from smart card transactions to examine public

transport usage. Some of these data sets, however,

record only the tap-in events of passengers (i.e.,

where they get onboard). The destinations of the

trips need to be further estimated or guessed

(Tr�epanier, Tranchant, and Chapleau 2007;

Robinson et al. 2014). Social media data have also

been used to derive OD matrices to support trans-

port planning (Yang et al. 2015). The mobility

traces of social media users can be sparse in time
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and space, though. In other words, in the contempo-

rary big data analytics, given the peculiar character-

istics of the raw data, the methodologies used will

largely affect the final results, which direct the find-

ings of the studies.
Another good example is the practice of mobile

phone data. Due to the increasing adoption of

mobile phones worldwide, the digital footprints

documented by these devices have introduced new

opportunities to human mobility research. Call detail

records (CDRs)—a typical type of phone data that

track individual whereabouts during phone usage

activities (e.g., calls, text messages)—have been used

extensively to study human travel and activity pat-

terns (Iqbal et al. 2014; Alexander et al. 2015; Jiang

et al. 2016, Jiang, Ferreira, and Gonz�alez 2017; Xu

et al. 2018). CDRs suffer from issues of data sparsity

(due to the passive data collection mechanism) and

location uncertainty (e.g., cellphone signal switch),

however, adding notable complexities to the estima-

tion of travel patterns (Isaacman et al. 2012; Cs�aji
et al. 2013; Xu et al. 2015; Zhao et al. 2016).

Similar issues also exist in other types of mobile

phone data (e.g., mobile sightings data, mobile sig-

naling data) and have been discussed by previous

researchers at different depths (Chen, Bian, and Ma

2014; Xu et al. 2016; F. Wang and Chen 2018).
Much of the uncertainty in mobile phone data is

associated with positional inaccuracy—a key form of

uncertainty in geospatial data (Goodchild 1998). In

2004, the University Consortium for Geographic

Information Science identified uncertainty in spatial

data as a long-term research challenge (McMaster

and Usery 2004). Research attention to uncertainty

issues of mobile phone data appears to have become

notable only in recent years, however (W. Wu et al.

2014; Chen et al. 2016; Kwan 2016; Xu et al. 2016).

A key characteristic of mobile phone data is that

the locations are documented at the level of cell

towers. These locations, which are usually repre-

sented as geographic coordinates of the cell towers,

do not necessarily reflect the actual locations of the

phone users. For instance, a cellphone’s signal could

oscillate between neighboring or even distant cell

towers due to load balancing or signal strength varia-

tion (Kwan 2016; Xu et al. 2016). Such issues of

positional inaccuracy have hindered reliable esti-

mates of human mobility patterns that are important

to many geospatial applications. Although these

issues have been noticed by the research community

(Kwan 2016), most efforts have been devoted to

demonstrating the value of these data without

questioning—or at least carefully examining—the

uncertainty and veracity issues associated with

the data.

The oversight of these issues is not without rea-

son. An important fact to mention is that these

mobility data sets—when they are born—are not

intended for travel behavior analysis. The lack of

“ground truth” makes it challenging to validate the

analytical results (i.e., OD estimation). Much hope,

as a result, has been put on the expectations that

researchers will do it right or the errors will balance

each other out when some kinds of aggregations are

performed (e.g., estimating OD matrices at the level

of traffic analysis zones). Although we have to

acknowledge the absence of ground truth as a nor-

mality of many “big” mobility data sets, there is a

need for alternatives that would look into this

issue—by comparing different methodologies, their

pros and cons, and the trade-offs among differ-

ent practices.

In this research, we aim to investigate the verac-

ity issue of mobile phone data when they are used to

characterize human mobility patterns. In particular,

we involve the usage of mobile signaling data

(MSD), a typical type of phone data used in human

mobility research. By applying several preprocessing

methods over the data set, we examine how these

methods change the data characteristics in different

ways and how such changes would affect the charac-

terization of individual human mobility patterns due

to location uncertainty.

The article is organized as follows. First, we dis-

cuss uncertainty issues in MSD that would hinder

accurate estimations of human mobility patterns,

followed by an examination of two existing methods

(clustering-based method, time window–based

method) for tackling or mitigating these issues. We

then propose a new approach that could overcome

some of the limitations of these two methods. By

processing mobile phone data using all three methods,

we derive a collection of indicators to systemically

compare their outputs, with the primary focus on

examining their abilities to tackle oscillations (i.e., the

ping-pong effect) in the data. We further derive a col-

lection of individual mobility indicators from three

sets of output—namely, the number of OD trips, num-

ber of activity locations, total stay time, and activity

entropy—and evaluate the impact of preprocessing
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methods on mobility estimations. Finally, we discuss

the implications of the results for future mobility stud-

ies and geographic knowledge discovery.

Mobile Phone Data for Human Mobility

Analysis: A Brief Review

Mobile phone data have been used for human

mobility analysis for more than a decade. In 2006,

scholars at the Massachusetts Institute of Technology

adopted cellular data to study the spatiotemporal

dynamics of human activities in cities (Ratti et al.

2006). At that time, the study used Erlang data, a

standard measure in the telecommunications industry

that records person hours of cellphone usage (Ratti

et al. 2006). Because Erlang is an aggregate measure

of traffic volume in telecommunications system, the

data are not suitable for studying movement patterns.

Later on, call detail records, another type of phone

data usually collected by cellular operators for billing

purposes, began to attract academic attentions. Due

to the ubiquity of mobile phones, CDRs are capable

of quantifying mobility of large populations. To date,

CDRs have been used to study human mobility from

various perspectives, generating numerous insights

into the regularities of individual movements

(Gonzalez, Hidalgo, and Barabasi 2008; Song, Koren,

et al. 2010; Song, Qu, et al. 2010; Pappalardo et al.

2015; Xu et al. 2018), usage of urban space (Becker

et al. 2013; Silm and Ahas 2014; Xu et al. 2015;

Yuan and Raubal 2016), interplay between mobility

and social network structures (Cho, Myers, and

Leskovec 2011; D. Wang et al. 2011; Calabrese,

Smoreda, et al. 2011; Gao et al. 2013; Toole et al.

2015; Xu et al. 2017; Xu et al. 2019), and so forth

(see Blondel, Decuyper, and Krings [2015] and

Birenboim and Shoval [2016] for extensive reviews).

Many travel behavior studies have involved the

usage of CDRs for OD estimation and mobility

modeling (Alexander et al. 2015; Jiang et al. 2016;

Pappalardo et al. 2016; Bwambale, Choudhury, and

Hess 2017; Jiang, Ferreira, and Gonz�alez 2017; Xu

et al. 2018). There are a few characteristics of CDRs

that would complicate such tasks, however.

� CDR data are collected at the level of cell towers, of

which the densities in space affect the positioning

accuracy. The spacing between cell towers in a city

or region could range from a few hundred meters

(e.g., in densely populated urban areas) to several

kilometers (e.g., in suburbs).

� The tower-to-tower balancing in the mobile network

systems will produce noise for CDRs, which causes

“the appearance of fake movements” (Alexander

et al. 2015, 241).

� CDRs suffer from a data sparsity issue as positions of

users are partially detected (e.g., during phone calls

and text messages).

To overcome these issues, researchers have proposed

some solutions, and the key ideas can be summarized

as follows:

� Clustering-based methods are introduced to detect

stay locations. A key practice is to group consecutive

location observations that are close in space into

clusters (Calabrese, Lorenzo, et al. 2011; Widhalm

et al. 2015; Fan et al. 2018). Such clustering methods

are able to filter some “fake movements” while cap-

turing meaningful activity locations of individuals.

� Beyond this step, some studies also perform an addi-

tional step to merge the detected clusters that are

close in space but might be far apart in time

(Alexander et al. 2015; Xu et al. 2018). The purpose

of this step is to maintain the unique identity of

activity locations. For instance, two stay locations of

an individual can be detected in the early morning

and evening in the same day, with their representa-

tive locations (e.g., mean center or medoid of obser-

vation locations in the clusters) being different but

geographically close. It is highly likely that these two

stay locations refer to the same activity location of

the user (e.g., home).

� OD trips of an individual can then be extracted

through travels conducted between consecutive

stay activities.

� To tackle the data sparsity issue, some studies filtered

individuals or observation days with few records. For

example, some researchers define an active observation
day as a day where “the user has phone records in at

least 8 distinct time-slots of the 48 half-hour time-

slots” (Jiang, Ferreira, and Gonz�alez 2017, 212). This
practice will partially address the data sparsity issue.

The choice of the threshold, however, which is

empirical and somewhat arbitrary, could have a direct

impact on the analysis that follows.

� Another factor that causes fake movements is cell

tower oscillation, also known as the ping-pong effect.

Such effects are caused by the users’ cellphone hand-

over to nearby cell towers due to load balancing,

operations by the telecommunication systems, or

other factors. As a result, the documented locations

of users—even when they stay still—will “bounce”

back and forth between two or more base stations.

Different solutions are proposed to tackle this issue.

For example, W. Wu et al. (2014) proposed a few
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heuristics to identify oscillations by detecting move-

ments at impossible speed or cell towers that

appeared repeatedly. F. Wang and Chen (2018) pro-

posed a time window–based method to detect oscilla-

tions as circular trips that occurred within a short

period of time. Bayir, Demirbas, and Eagle (2010)

introduced a graph-based clustering algorithm, which

iteratively merges densely connected cell towers in a

user’s trajectory to address the oscillation effect.

Note that some studies also adopted sightings data

for travel behavior analysis (Calabrese et al. 2013;

Chen, Bian, and Ma 2014). Sightings data can be

considered a “sibling” of CDRs. On the one hand,

the data have a similar generation mechanism in

that locations are passively collected during phone

usage activities. On the other hand, instead of

reporting the user footprint at the cell tower level,

sightings data provide location estimates through tri-

angulation technology, which further improves the

spatial granularity of observations.

Despite the numerous insights into human mobil-

ity discovered from CDRs and sightings data, the

observations from them are generally sparse due to

the passive data collection mechanism. MSD,

instead, provide a more fine-grained view of human

mobility traces especially from the temporal aspect.

Different from CDRs and sightings data, which are

recorded during phone usage activities, MSD could

capture user footprints in a more continuous manner

through different types of events triggered by the tel-

ecommunications system (Janecek et al. 2015).

Depending on the state of a phone—active when

phone usage is detected or idle when no user activi-

ties are observed—location observations can be cap-

tured by different types of signaling events, such as

cellular handover, calls, SMS, data connection, and

other types of location updates. The improvement in

data granularity makes MSD an appealing option for

mobility studies (Z. Li et al. 2018; M. Li et al. 2019;

Yan et al. 2019). Similar to CDRs and sightings

data, however, issues of location uncertainty (e.g.,

tower-to-tower balancing, oscillation effect) still per-

sist. There is a need to develop proper methods to

handle these issues and, meanwhile, discuss their

impact on travel behavior analysis.

Data

A large mobile signaling data set collected in

Shanghai, China, is used. The data set captures the

location traces of 7.6 million phone users during a

period of one week (15–21 October 2012). The loca-

tions of phone users were tracked at the level of cell

tower antennas (referred to as cells), and the loca-

tion reporting was triggered through different types

of signaling events. Table 1 provides a summary of

the key events captured in the data set. For instance,

when users engage in active phone usage, their loca-

tions will be documented by the outbound communi-

cation (OT), inbound communication (IN), or

cellular handover (CH) events.1 Even if the user has

been silent for a while (i.e., no phone usage activities

or movements), her location will be reported by the

regular update (RU) or periodic update (PU) events.
Different from CDRs, which passively collect data

during phone usage activities, the MSD set tracks

user locations in a more continuous manner. This is

because the RU and CH events are able to capture

user movements at the cell level whether the user

engages in phone usage activities or not. To elabo-

rate, if two consecutive records (ordered by time) of

a user correspond to the same cell, we can assume

that the user stayed at that location during this

period, because movements across cells will be

recorded by the corresponding event (RU or CH).
This study takes user daily trajectory, defined as

the location sequence of a user of a single day, as

the basic unit for subsequent analysis. Because

mobile phones can be switched on or off (Table 1),

Table 1. Summary of signaling events captured in the data set

Event type Description

Outbound communication (OT) Triggered by outbound phone call or text message

Inbound communication (IN) Triggered by inbound phone call or text message

Regular update (RU) Triggered by regular update of cellular state (active or idle)

Periodic update (PU) Triggered by periodic tower pinging

Cellular handover (CH) Triggered by cellphone handover from one antenna to another

Power on (ON) Triggered when a phone is turned on and accesses the cellular network

Power off (OFF) Triggered when a phone is turned off and disconnects from the cellular network
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location of users will be unavailable during the dis-

connected periods. Thus, we filter the data set by

removing user daily trajectories with power on (ON)

or power off (OFF) events. The data set after remov-

ing such cases includes 36.7 million user daily trajec-

tories. In other words, an average user would

contribute approximately 36:7� 7:6� 4:8 valid tra-

jectories to the filtered data set.

Figure 1 shows some general statistics of the data

set. The number of records of a trajectory vary nota-

bly from each other, with mean and median values

of 59.3 and 41.0, respectively (Figure 1A). The

interevent time, measured as the duration between

two consecutive records in a trajectory, ranges from

a few seconds to several hours (Figure 1B). The

mean and median values are 20.25 and 1.55minutes,

respectively. To better understand the density of cell

tower antennas in the city, we compute, for each

cell, its distance to the nearest cell. This yields a

skewed distribution with mean and median values of

149.3m and 92.8m, respectively (Figure 1C). To

obtain a better understanding of the spatial distribu-

tion of cell towers in the city, we generate a 1 km �
1 km regular grid and compute the number of towers

in each grid cell. As shown in Figure 2, cell towers

are unevenly distributed in Shanghai and their densi-

ties are generally higher in the core part of the city

(e.g., Downtown Shanghai).

Method

In this section, we first define several key concepts

that are pertinent to our analysis, followed by a sum-

mary and implementation of two existing methods for

preprocessing mobile signaling data (clustering-based

method, time window–based method). The analysis

results will be shown in the next section to demon-

strate the impact of these methods and the choice of

the key parameters on data characteristics. Finally, we

introduce an improved algorithm to overcome some

of the limitations in these two approaches.

Definitions

A user daily trajectory (T) is defined as a

sequence of tuples:

T ¼ fðl1, t1Þ, ðl2, t2Þ, :::, ðln, tnÞg, (1)

where li and ti denote the location and the time of

the ith observation.

A displacement (ds) is defined as the Euclidean dis-

tance between two consecutive observations (li, ti)
and ðliþ1, tiþ1Þ in a trajectory T:

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~liþ1�~liÞ2

q
: (2)

A type 1 oscillation pair (Op1) is defined as a subse-

quence of T, with a length of NðOpÞ ¼ 3, in which

the observations “bounce” back and forth between

two locations:

Op1 ¼ fðli, tiÞ, ðliþ1, tiþ1Þ, ðliþ2, tiþ2Þg (3)

subject to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~liþ2�~liÞ2

q
¼ 0: (4)

In the remainder of the article, we use A-B-A to

describe the phenotype of such oscillation pairs.

Figure 1. General statistics of the mobile signaling data: (A) number of records per trajectory; (B) distribution of interevent time; (C)

spacing gap between cell tower antennas.
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A type 2 oscillation pair (Op2) is defined as the fol-

lowing subsequence:

Op2 ¼ fðli, tiÞ, ðliþ1, tiþ1Þ, ðliþ2, tiþ2Þ, ðliþ3, tiþ3Þg (5)

subject to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~liþ3�~liÞ2

q
¼ 0 (6)

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~liþ2� ~liþ1Þ2

q
¼ 0: (7)

Similarly, the phenotype of type 2 oscillation pair

can be represented as A-B-B-A.
An oscillation sequence (Os) is defined as a subse-

quence of T that consists of continuous appearance

of type 1 or type 2 oscillation pairs or a combination

of both. Examples of an oscillation sequence are A-
B-A, A-B-A-C-A, A-B-B-A-B-A, and A-B-B-A-C-A.
Note that an oscillation sequence could consist of

repeated oscillation pairs (e.g., A-B-A-B-A) or a

combination of different ones (A-B-A-C-A). Note

that the total number of oscillation pairs in an oscil-

lation sequence as well as the split of two types can

be easily computed. For instance, the total number

of oscillation pairs, the number of Op1, and the

number of Op2 in A-B-B-A-C-A are two, one, and

one, respectively.

Two-Stage Clustering and Time
Window–Based Methods

The two-stage clustering and time window–based

methods are frequently used in existing studies to

tackle location uncertainty issues in mobile phone

data. For instance, issues such as cellphone load bal-

ancing or signal strength variation could cause a user’s

documented location to switch among adjacent cell

towers (Isaacman et al. 2012; Cs�aji et al. 2013), gen-
erating fake movements that complicate human

mobility analysis. Some studies also define this issue

as oscillation or a ping-pong effect, which describe

that a phone’s signal could switch between multiple

cell towers even though the device is not moving

(W. Wu et al. 2014). Given these issues, the two-

stage clustering method is primarily used to generalize

users’ documented locations to derive their represen-
tative locations (e.g., stay locations). The time win-

dow–based method focuses explicitly on detecting and

removing oscillations in the data. In this study, we

apply the two-stage clustering algorithm first, followed

by the time window–based method to further detect

oscillations. In the next section, we introduce an

alternative solution to the time window–based

method and discuss their trade-offs.
The two-stage clustering algorithm used in previ-

ous studies (Alexander et al. 2015; Jiang, Ferreira,

Figure 2. Number of cell towers in each grid cell (1 km � 1 km grid).
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and Gonz�alez 2017; Xu et al. 2018) is first applied to

identify stay locations from the trajectories.

Note that before this clustering process, we per-

formed a zero step to remove cellphone records with

abnormal speed (i.e., � 120 km/hr). Given T ¼
fðl1, t1Þ, ðl2, t2Þ, :::, ðln, tnÞg, in the first stage, we com-

pare each observation with the subsequent one and

merge them into a segment if they fall within a

roaming distance of Dd1: We use the medoid of

these observations—defined as the most visited cell

in that segment—as its representative location. The

representative location is then compared with

the next observation, which will be merged into the

same segment if they (representative location of the

segment and the observation) fall within Dd1: The
representative location of the segment will be

updated as more observations are added. The

clustering process will terminate until all seg-

ments are identified. This results in a sequence

fðl01, t01, dur1Þ, ðl02, t02, dur2Þ, :::, ðl0n, t0n, durnÞg where l0i , t
0
i ,

and duri denote the medoid, starting time, and

the stay duration of the ith segment, respectively

(Stage 1 in Figure 3A).

In the second stage, we further group the stay seg-

ments that are close in space but apart in time to

further generalize a user’s activity locations. In par-

ticular, we identify the stay segments with represen-

tative locations that are within a roaming distance

of Dd2: We compute the medoid of these segments,

which is used as the new representative location to

annotate them (Stage 2 in Figure 3A).

The clustering-based algorithm can partially

tackle the issue of cellphone signal switch, but the

oscillations between cells could still persist (e.g., sig-

nal switch beyond the set threshold of Dd1 and
Dd2). Here, we apply a time window–based method

proposed in F. Wang and Chen (2018) to further

tackle this issue. By imposing a moving window with

a fixed length (e.g., 5minutes), the method aims to
detect circular events—subsequences in a trajectory

that start and end at the same cell—and identify

those within the time window as oscillations

(Figure 3B). The underlying assumption is that indi-

viduals are less likely to perform a circular trip
within a short period of time. Although some studies

perform oscillation detection over the raw data, in

this study we apply the time window–based method

after performing the two-stage clustering algorithm.
This is because part of the oscillation issue can be

addressed by the clustering step, of which the out-

put—the stay segments annotated by the medoids—

could further enhance the effectiveness of oscillation

detection in the next step. In other words, we use
the representative locations of the observations to

perform the oscillation detection.

A New Approach for Oscillation Detection Based
on Mean Absolute Deviation

In this section, we propose a new approach for

oscillation detection based on the notion of mean

absolute deviation (MAD). Given a user’s daily tra-
jectory, MAD measures the average deviation of

Figure 3. (A) Two-stage clustering algorithm. In Stage 1, stay segments are detected and annotated with their representative locations

(l01, l
0
2, l

0
3). In Stage 2, segments that are close in space but apart in time are further grouped, with their representative locations updated.

In this example, l01 is used as the representative location to annotate Segment 1 and Segment 3. (B) Illustration of the time window–based

method: Depending on the size of the time window and the duration of the “circular events,” some are identified as oscillations (green),

whereas others are not (red). This reveals a potential limitation of the time window–based method for oscillation detection.
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each location’s visitation frequency from the median

of the data set:

MAD ¼
Pn

i¼1jxi�mðXÞj
n

: (8)

Here, n denotes the total number of locations tra-

versed by the user daily trajectory and xi denotes the
frequency of visits to the ith location. m(X) refers to
the median frequency of all locations.

The idea of the algorithm is simple. Because

individuals usually pay few visits to a limited number

of locations in a day, a user daily trajectory—if cap-

turing a realistic representation of travel patterns—

would have an MAD within a reasonable range.

Due to oscillation effect, however, the cellphone sig-

nal would switch frequently among a collection of

cells. These cells could either reflect a user’s true

locations or ones that were never visited by the

user. The frequency of these cells will be relatively

high compared to that of others (i.e., actual loca-

tions visited by user but not part of the oscillations).

This would result in a suspiciously high value of

MAD, which is an indication of likely oscillations.

Thus, our approach aims to remove likely oscilla-

tions in an iterative manner until the value of

MAD converges.

Figure 4 illustrates the workflow of the proposed

approach. As mentioned previously, for each trajec-

tory, the output of the two-stage clustering is used as

the input. The algorithm contains two phases. The

global phase aims to document the MAD of each

iteration as well as the difference between two itera-

tions. Meanwhile, it also identifies the focal point of

each iteration, which determines where the oscilla-

tion sequences can be detected and possibly

removed. The local phase aims to remove part of

the oscillations in the trajectory. The new value of

MAD after removing these oscillations (MADnew)

will be reported back to the global phase to deter-

mine whether the algorithm terminates.
In the first step, we compute the MAD of the tra-

jectory, denoted as MADcurrent, to document the ini-

tial state. We then identify the location with the

highest visitation frequency as the focal point of this

iteration. We identify this focal point because it pro-

vides an important clue about where the oscillation

occurs. For simplicity, we use A to denote this

focal point.

Then, the algorithm switches to the local phase

by identifying all of the oscillation sequences with A
as the focal point. These oscillation sequences, as

mentioned previously, could consist of continuous

appearance of type 1 or type 2 oscillation pairs or a

Figure 4. Workflow of the new approach based on MAD. MAD ¼ mean absolute deviation.
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combination of both. Examples of these oscillation

sequences are A-B-A-B-A, A-B-A-B-B-A-B-A, and

A-B-A-C-A-C-A, among others. For each of the

detected oscillation sequences, our algorithm identi-

fies the most frequently visited location other than

the focal point A. Then an oscillation removal pro-

cess is triggered by merging this location to the focal

point. For instance, given A-B-A-B-A, B is identified

as the most visited location other than the focal

point A, and the oscillation sequence after merging

the two locations becomes A-A. Taking A-B-A-C-
A-C-A as another example, location C will be iden-

tified and the sequence after merging C to A will

become A-B-A-A. Note that we always merge loca-

tions to the focal point A because it has the highest

visitation frequency, which indicates that it is likely

to be an actual activity location visited by the

phone user. The local phase continues as all of the

detected oscillation sequences are processed.
Note that for each oscillation sequence, the algo-

rithm only merges two locations (i.e., the focal point

A and the most visited location other than A) at a

time. In other words, if an oscillation sequence

includes more than two distinct locations, different

types of oscillation pairs will be tackled at different

iterations of the algorithm. For example, given A-B-
A-B-A-C-A-C-A-C-A, C will be identified first

and merged to A, and if the algorithm does not

terminate when going back to the global phase, A-
B-A-B-A will be detected and processed in the next

iteration if A is still selected as the focal point.

Once all of the oscillation sequences are processed

in the local phase, the algorithm will update the fre-

quency of each location, from which MADnew is

computed. Note that when calculating the location

frequency, if the same location repeats continuously

over time, we only keep the first and last locations

to avoid repetitive counting in next iteration (e.g.,

for a subsequence D-C-C-C-C-D in a trajectory, the

frequency of C will be counted as two instead

of four).
In this algorithm, we introduce an important param-

eter, DM, to determine whether the algorithm will ter-

minate. In particular, if MADcurrent�MADnew >DM,

the algorithm will start a new iteration by searching

the new focal point. Otherwise, the algorithm will ter-

minate and the changes (i.e., merge of location in the

local phase) made in the current iteration will be

rolled back. In other words, the trajectory before con-

ducting the local phase will be returned as the output.

The choice of DM controls the strictness of the oscilla-

tion removal, which affects the result of the output tra-
jectory. A small DM allows the algorithm to continue
even when a small change in MAD is identified. A
large value, however, will only remove oscillations

with a high frequency.
Figure 5 shows a simple example of how the time

window–based method and MAD approach could

achieve different outcomes. Here we select a user tra-
jectory (Figure 5A) and then perform the outlier
removal (Figure 5B) and the two-stage clustering

algorithm (Figure 5C). Then, we apply the time
window–based method (window size: 5minutes) and
the MAD approach (DM ¼ 0:5) and compare their

output. As shown in Figure 5D and Figure 5E, the
time window–based method is simply a downsampling
process, which only removes oscillation pairs within
the 5-minute time window. It can be seen that many

oscillation pairs still persist in the output. The MAD
approach, in this example, tends to remove highly
frequented oscillations (Figure 5F), thus achieving a

more satisfactory result (Figure 5G).
We then introduce a few indicators to systematically

compare the two methods. Given a particular method

used, we first introduce RS
op, to measure the total num-

ber of oscillation pairs (including both type 1 and type
2) that were removed in an oscillation sequence S:

RS
op ¼

total number of oscillation pairs removed from S
total number of oscillation pairs in S

:

(9)

We also can distinguish the two types of oscillation

pairs and quantify their detection ratios, respectively:

RS
op1 ¼

total number of Op1 removed from S
total number of Op1 in S

(10)

RS
op2 ¼

total number of Op2 removed from S
total number of Op2 in S

:

(11)

The preceding three indicators measure the detec-
tion ratios from the perspective of oscillation
sequence. Similarly, we can measure the detection
ratios from the perspective of user daily trajectory T:

RT
op ¼

total number of oscillation pairs removed from T
total number of oscillation pairs in T

(12)

RT
op1 ¼

total number of Op1 removed from T
total number of Op1 in T

(13)
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RT
op2 ¼

total number of Op2 removed from T
total number of Op2 in T

:

(14)

In the next section, we report the detection ratios of

the two methods (time window–based method and

MAD) and discuss the impact of parameter choice.

Analysis Results

Impact of Two-Stage Clustering on Data
Characteristics

We first apply the two-stage clustering algorithm

and evaluate its impact on data characteristics. Given

that the average spacing gap between cells is roughly

150m (Figure 1C), we set both Dd1 and Dd2 at 200

m and monitor the changes in oscillation sequences

and oscillation pairs as the algorithm is applied.

According to the results, the average number of oscil-

lation sequence (Os) in a trajectory is reduced from

3.68 to 2.10 (Figure 6A and Figure 6E), suggesting

that the algorithm addresses part of the oscillation

effect even before other dedicated methods are

applied. By computing the total number of oscillation

pairs in a trajectory, we find a decrease in the overall
mean from 7.64 to 4.62 (Figure 6B and Figure 6F).

By further splitting the two types of oscillation pairs,
we find that the algorithm has a notable impact on
removing type 1 oscillation pairs (Figure 6C and Figure

6G). The average number of Op1 per trajectory changes
from 6.95 to 3.50, but the average number of type 2
oscillation pairs (Op2) increases from 0.69 to 1.13

(Figure 6D and Figure 6H), indicating that the cluster-
ing algorithm produces new instances of oscillations.

Figure 7 illustrates the number of unique locations
in a trajectory and the interevent time of the two
types of oscillation pairs after performing the two-stage

clustering algorithm. The mean and median numbers
of unique locations in a trajectory are 10.36 and 7.00,

respectively (Figure 7A). The interevent time of Op1,
measured as the elapsed time between two A in A-B-
A, varies notably from each other (Figure 7B). A sub-

stantial amount of type 1 oscillation pairs have an
interevent time greater than 5minutes. This reveals a

notable limitation of the time window–based method
that many of these oscillation pairs will be ignored
given an arbitrarily selected window size (e.g.,

Figure 5. An example comparing the time window–based method and the new approach based on MAD: (A) raw data of a user daily

trajectory; (B) L1 is identified with abnormal speed and thus removed in the zero step; (C) the two-stage clustering merges some of the

locations (e.g., L2 is grouped with nearby cells to form a new representative location); (D–E) the time window–based method (window

size: 5minutes) only removes oscillations within the 5-minute time window; (F–G) the MAD approach tends to identify highly

frequented oscillations and achieve more reasonable outcome. MAD ¼ mean absolute deviation.

524 Xu et al.



5minutes). This issue persists when type 2 oscillation

pairs are handled. A large variation in interevent time

(the elapsed time between two As in A-B-B-A) makes

it extremely difficult to justify the choice of window

size (Figure 7C).

Two Oscillation Detection: Time Window–Based
Method versus MAD Approach

We compare the two methods using the indicators

proposed earlier. For this analysis, we only consider

user daily trajectories with at least one oscillation

pair after performing the two-stage clustering algo-

rithm. Figure 8 demonstrates the detection ratios of

the two methods from the perspective of oscillation

sequence, using DM ¼ 0:5 and a window size of

5minutes as an example. By extracting all of the

oscillation sequences in the trajectories, for each

oscillation sequence S we compute RS
op,R

S
op1, and

RS
op2 for the two methods. This allows us to investi-

gate not only the average detection ratio of each

method (RS
op ,R

S
op1 , and RS

op2) but also the difference

Figure 6. Distributions of the number of oscillation sequence, total number of oscillation pairs, number of type 1 and type 2 oscillation

pairs in a trajectory (A–D) before and (E–H) after the two-stage clustering algorithm is performed.

Figure 7. Distribution of (A) number of unique locations in a user trajectory, (B) interevent time of type 1 oscillation pairs, and (C)

interevent time of type 2 oscillation pairs based on the output of two-stage clustering algorithm.
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between the two (DRS
op,DR

S
op1, and DRS

op2 that are

measured for each S). When reporting these indica-

tors, we also distinguish the total number of oscilla-

tion pairs in S to get a better sense of its impact.
As shown in Figure 8A, the average detection ratio

of the MAD approach (diamond) tends to be higher

than that of the time window–based method (circle),

even when the number of oscillation pairs in S is

controlled. This finding is further illustrated by the

box plot showing the distribution of DRS
op:

Interestingly, we find that the detection ratio of both

methods increases as the oscillation sequence becomes

longer. Such an increase for the time window–based

method is due to the decreased interevent time of

oscillation pairs as S becomes “denser.” For the MAD

approach, the average detection ratio increases much

faster and quickly converges to nearly 100 percent,

suggesting its better performance, especially for tack-

ling long oscillation sequences. We also find a rela-

tively consistent difference between the two methods

when splitting type 1 (Figure 8B) and type 2 (Figure

8C) oscillation pairs.
We next examine how well the two methods han-

dle user daily trajectories. Again, the MAD approach

outperforms the time window–based method by

achieving a higher detection ratio, whether the two

types of oscillations are combined (Figure 9A) or

not (Figure 9B and Figure 9C). Note that the dif-

ference between the two methods, especially when

handling Op1, is smaller when a trajectory contains

few or many oscillation pairs (Figure 9B). To elabo-

rate, both methods achieve lower detection ratios

when oscillations are sparse but tend to perform

well when there are many oscillation pairs in

a trajectory.

When computing the MAD (Equation 8), an

important parameter is the number of unique loca-

tions in a trajectory (n). Here, we further evaluate

the relationship between n and the performance of

the two methods. As can be seen in Figure 10A, the

average detection ratio of the MAD approach (dia-

mond), RT
op , tends to decrease as n increases. An

opposite trend is observed, however, for the time

window–based method (circle). Similar patterns are

observed when splitting type 1 (Figure 10B) and

type 2 (Figure 10C) oscillation pairs despite the fact

that the two curves (circle vs. diamond) cross each

other at different values of n.

Figure 8. Detection ratio of oscillation pairs in an oscillation sequence when combining or splitting type 1 and type 2 oscillation pairs.

Horizontal axes denote the number of oscillation pairs in an oscillation sequence: (A) combined; (B) type 1 oscillation pairs (Op1); (C)

type 2 oscillation pairs (Op2). MAD ¼ mean absolute deviation.
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The low detection ratio of the MAD approach,

when n is large, is partially affected by the relation-
ship between DM and n. In this example, DM is
chosen as 0.5. Because the MAD approach addresses
oscillations in an iterative manner, when n is large

it requires the detected oscillations (around the focal
point A) to appear highly frequently to pass the cur-
rent iteration; that is, to produce substantial changes

to
Pn

i¼1 jxi�mðXÞj: In other words, the MAD
approach will only remove the oscillations with a
high frequency when the trajectories traverse many

distinct locations. This suggests that an adaptive
choice of DM can possibly improve the MAD
approach. In particular, as n becomes larger, the

value of DM can be lowered to allow more oscilla-
tion occurrences to be removed. Evaluating this
alternative is a possible direction for future research.

Next, we evaluate the impact of parameter choice
on detection ratio. For the time window–based
method, increasing the window size will remove

more oscillation pairs in trajectories, thus increasing
the average detection ratio RT

op : For the MAD
approach, a small threshold DM will make the

algorithm “tolerant,” allowing less frequented

oscillations to be removed. Here, we choose six dif-
ferent thresholds, DM ¼ 0:01,DM ¼ 0:1,DM ¼
0:25,DM ¼ 0:5,DM ¼ 1:0, and DM ¼ 5:0, and
compare them with the time window–based method

with two parameter settings; that is, the 5-minute and
10-minute window sizes.

As shown in Figure 11, the MAD approach

with the first four parameter settings (DM ¼
0:01,DM ¼ 0:1,DM ¼ 0:25,DM ¼ 0:5) tends to out-
perform the time window–based method with the 5-

minute threshold (red curve). When DM is set to
higher values, however, such as 1.0 and 5.0, the oscil-
lation removal process becomes more restrictive, thus

achieving lower detection ratios. The result reveals
both the advantage and limitation of the MAD
approach. On the one hand, the time window–based

method tends to achieve compatible or even higher
detection ratios when the number of oscillation pairs
in a trajectory is small (e.g., less than ten). This indi-

cates that without carefully calibrating the value of
DM, the MAD approach might produce unsatisfac-
tory output when oscillations are sparse in a

Figure 9. Detection ratio of oscillation pairs in a user daily trajectory when combining or splitting type 1 and type 2 oscillation pairs.

Horizontal axes denote the number of oscillation pairs in a user daily trajectory: (A) combined; (B) type 1 oscillation pairs (Op1); (C)

type 2 oscillation pairs (Op2). MAD ¼ mean absolute deviation.
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Figure 10. Detection ratio of oscillation pairs in a user daily trajectory when combining or splitting type 1 and type 2 oscillation pairs.

Different from Figure 9, horizontal axes here denote total number of unique locations in a trajectory. MAD ¼ mean absolute deviation.

Figure 11. Average detection ratio of trajectories ( �RT
op) of the two methods under different parameter settings. Horizontal axis denotes

total number of oscillation pairs in a user daily trajectory. MAD¼mean absolute deviation.
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trajectory. One the other hand, the MAD approach

shows a clear advantage over the time window–based

method when many oscillation pairs are presented in

a trajectory. Among these oscillation pairs, many are

not removed by the time window–based method sim-

ply because their interevent time is greater than the

window size. These highly frequented oscillations are

detected and removed properly by the MAD

approach, however. Note that increasing the window

size (e.g., to 10minutes; see reddish line in Figure

11), as expected, will improve the overall detection

ratio. The time window–based method, however,

ignores the inherent structures in oscillation patterns,

thus failing to remove part of the highly frequented

oscillations.

Impact of Preprocessing Methods on
Mobility Estimation

In this section, we further investigate the impact

of the three methods on individual mobility estima-

tions. For each user’s daily trajectory, we collect the

outputs generated from them; that is, two-stage clus-

tering algorithm, time window–based method (win-

dow size ¼ 5minutes), and the MAD approach

(DM ¼ 0:5). We then derive the following four

mobility indicators from these outputs and evaluate

their differences:

1. Number of OD trips: Given a user’s daily trajectory, we

first derive all of the stay activities with a duration

above a threshold (e.g., 10minutes). Then, OD trips are

derived from consecutive stays. Note that if two

consecutive stays for an individual correspond to the

same location, we do not count the “movement” in

between as a trip in this analysis. We compare the

number of OD trips derived from three different

methods, denoted as ODclustering, ODtimewin, and ODmad,

respectively. We report the comparison results based on

two different thresholds of stay duration: 10minutes and

30minutes. We use 10minutes because the threshold

was adopted in many travel behavior studies to detect

travelers’ meaningful stays (Alexander et al. 2015; Jiang,

Ferreira, and Gonz�alez 2017; Xu et al. 2018). The other

threshold (30minutes) is used to evaluate whether the

differences between the three methods remain

consistent. The choice of the threshold can be adjusted

based on specific study or application purposes.

2. Number of activity locations is simply defined as the

total number of unique locations derived from a user’s

stay activities (above the 10-minute or 30-minute

threshold). A large value indicates that the user’s

daily activities tend to be distributed across a variety

of activity locations. We compare this number across

the three methods, denoted as Aclustering, Atimewin, and

Amad, respectively.

3. Total stay time is defined as the total amount of time

that a user stays across all of the activity locations;

that is,
P

durationðliÞ: Note that when calculating this

indicator, the threshold of stay time (e.g., 10minutes

or 30minutes) is not imposed. The total stay times

derived from the three methods are denoted as

Sclustering, Stimewin, and Smad, respectively.

4. Activity entropy is introduced to quantify the

diversity of a user’s daily activities. Given the total

stay time extracted at each location li, we can measure

the proportion of stay as pi ¼ durationðliÞP
durationðliÞ : The activity

entropy is then calculated as H ¼ �P
pi � logðpiÞ: We

use Hclustering, Htimewin, and Hmad to denote this

indicator derived from the three methods.

Figure 12 reports the comparison results of OD esti-

mation using stay duration of 10minutes as the
threshold. As shown in Figure 12A, the two-stage

clustering algorithm yields a mean and median of
2.30 and 2.00, respectively. Using the time
window–based method, as shown in Figure 12B,

results in a slight increase in the mean value. By fur-
ther measuring their difference at the level of indi-
vidual trajectory (Figure 12D), we find that the two

methods produce the same number of OD trips (i.e.,
ODtimewin�ODclustering ¼ 0) for 96.6 percent of the
trajectories, whereas for the rest the time window–

based method always gives a higher estimation.
Compared to these two methods, the MAD

approach produces a mean of 1.97 (Figure 12C).

The comparison between MAD and two-stage clus-
tering (Figure 12E) shows that both methods give

the same estimation result for 75.5 percent of the
trajectories. For the remaining trajectories, however,
the MAD approach gives higher estimations for 4.5

percent of the trajectories but lower estimations for
20.0 percent of the cases. A similar conclusion can
be reached by comparing the MAD approach and

time window–based method. The two methods give
the same estimation result for 74.2 percent of the
trajectories. For the remaining trajectories, the MAD

approach gives higher estimations for 3.9 percent of
the trajectories but lower estimations for 21.9 per-

cent of the cases. Note that we also compare the
three methods using 30minutes as the threshold,
and similar findings are observed (see Figure A.1 in

the Appendix). In sum, if viewing the result of two-
stage clustering as the baseline, the MAD approach
tends to produce lower estimations of OD trips,
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whereas the time window–based method has a negli-

gible impact. This is because for the MAD approach,

certain cells are merged toward the focal point dur-

ing oscillation removal. In other words, the move-

ments that are part of these likely oscillations are

not considered valid OD trips. The result suggests

that the way the oscillations are tackled in the

mobile signaling data could have a notable impact

on the estimation of OD trips.

When estimating the number of activity locations

(Figure 13), the three methods output means of

2.51, 2.53, and 2.26, respectively. Compared to the

baseline derived from the two-stage clustering algo-

rithm, the MAD approach produces lower estima-

tions for 18.6 percent of the trajectories and higher

estimations for only 3.0 percent of the cases (Figure

13E). The results of the time window–based method

and two-stage algorithm closely resemble each other,

however (Figure 13D). Again, the implication here

is that performing the MAD approach will have a

more obvious impact on this mobility indicator than

performing the time window–based method, given

that the latter is more or less a downsampling pro-

cess of mobile phone trajectories. (Readers can refer

to Figure A.2 in the Appendix for comparative

results based on stay duration of 30minutes.)
Regarding the total stay time, the output of two-

stage clustering produces mean and median values of

831.05 and 835.65minutes, respectively (Figure 14A).

The time window–based method produces slightly

larger values (Figure 14B). The MAD approach, how-

ever, gives much higher estimations (Figure 14C).

The result indicates that by ignoring structural prop-

erties of oscillations in a trajectory, the estimation of

total stay time can be off by several hours or even

longer (Figure 14E and Figure 14F).
The estimation of stay time will also affect the

characterization of activity diversity (Figure 15).

Because the MAD approach is able to detect highly

frequented oscillations, when these oscillations are

removed or, more precisely speaking, merged toward

the focal points, the observed stay time at these

Figure 12. (A–C) Distribution of ODclustering, ODtimewin, and ODmad and (D–F) pair-wise comparison of the three methods.

Origin–destination trips are generated based on stay duration of 10minutes.
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focal points will increase. These focal points, which

can be meaningful activity locations of individuals

(e.g., home cell or work cell), have a notable impact

on the estimation of activity entropy. As a result, as

shown in Figure 15, the MAD approach produces

lower entropy values, whereas the distributions of

the other two methods are relatively more similar.

Discussion and Conclusion

Data veracity is an important but often neglected

issue in big data analytics. This issue has been and

will always be challenging to the validity of research

that involves the use of big data. Without paying

attention to this issue, the knowledge generated

from the data, as claimed by Kwan (2016), will risk

becoming an artifact of the algorithms used. In this

study, we aim to reflect on this issue through the

analysis of a large-scale mobile phone data set. Our

results demonstrate that the choice of data prepro-

cessing methods could lead to changes in the data

characteristics. Such changes, which are nontrivial,

will further affect the characterization of human

mobility patterns.
By applying a two-stage clustering algorithm over

the MSD, we highlight the effectiveness of this step

in tackling the location uncertainty issues.

Meanwhile, we find that some issues, primarily the

cell tower oscillation effect, cannot be addressed

completely. An example shown in Figure 5 clearly

reveals this effect along with other issues (e.g., out-

liers with abnormal speed). The presence of these

issues is likely to cause a deviation in users’ docu-

mented locations from their true locations.

Although we are not able to measure this deviation

due to the absence of ground truth, we find that the

three preprocessing methods could generate different

outputs (i.e., mobile phone trajectories after prepro-

cessing), which affect how human mobility patterns

are further analyzed and interpreted.

By further applying the time window–based

method, an existing practice for handling

Figure 13. (A–C) Distribution of Aclustering, Atimewin, and Amad and (D–F) pair-wise comparison of the three methods. Results are

generated based on stay duration of 10minutes.
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oscillations, we find that the oscillation issue is par-

tially addressed. Despite the fact that some oscilla-

tion pairs are detected within the window size (e.g.,

5minutes) and then removed, there are many more

that are not filtered simply because their interevent

time is larger than the window size. This makes the

time window–based method problematic. Because

the interevent times of oscillations vary notably

from each other (Figure 7), the time window–based

method, depending on the choice of window size,

becomes a downsampling process that removes oscil-

lations in a somewhat random way.

We then propose an approach based on the notion

of MAD to improve the oscillation detection. The

MAD approach conducts the removal process by

locating oscillation occurrences that appear most fre-

quently in the trajectory and repeats this process until

the value of MAD converges. The key advantage of

the MAD approach is its ability to capture the fre-

quency distribution of oscillations, from which the

most suspicious ones are removed first. By comparing

the MAD approach with the time window–based

method through the six proposed indicators, we find

that the MAD approach tends to achieve higher

detection ratios, especially when there are many oscil-

lation pairs in a trajectory. The comparison also

reveals the limitation of both methods when oscilla-

tions are sparse in the data. The results shown in

Figure 11 suggest that when DM is set to 0.5, the

MAD approach tends to achieve more satisfactory

results than the time window–based method. The

optimal value or range of DM, however, should be

further evaluated when ground truth data of human

movements are available. We believe that the choice

of DM is jointly affected by the spatial distribution of

cell towers in the study area as well as the character-

istics of MSD. Testing the proposed approach across

different data sets and study areas is a meaningful task

for future research.
To better understand geographic patterns of the

detected oscillations, we perform an additional anal-

ysis here by counting the number of occurrences for

which each cell tower is associated with oscillations

(using DM ¼ 0:5). We summarize such information

Figure 14. (A–C) Distribution of Sclustering, Stimewin, and Smad and (D–F) pair-wise comparison of the three methods.
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at the level of a 1 km � 1 km grid. As shown in

Figure 16, the oscillations are observed more fre-

quently in the core part of Shanghai, which is also

the area where cell towers are densely distributed

(Figure 2). These areas generally correspond to

places that are frequently used by phone users (i.e.,

densely populated areas). Thus, the results in Figure

2 and Figure 16 suggest that cell tower oscillations

tend to be more pronounced in densely populated

areas. Ignoring the uncertainty issues in the mobile

phone data will have a larger impact on these areas,

where decision making on urban design and manage-

ment is frequently needed (e.g., infrastructure invest-

ment, disease control, transport planning).
To evaluate the impact of these methods on mobil-

ity estimations, four individual mobility indicators—

namely, number of OD trips, number of activity loca-

tions, total stay time, and activity entropy—are intro-

duced. These indicators are derived from the outputs

of the three different methods (two-stage clustering,

time window–based method, and MAD) and then

compared. Two findings are worth noting. First, the

two-stage clustering algorithm and time window–based

method result in similar distributions for all four

mobility indicators. This suggests that although the

time window–based method removes a substantial

amount of oscillations in trajectories, the impact on

mobility characterization is small or even trivial. This

is largely due to the downsampling nature of time win-

dow–based method when it is used to detect oscilla-

tions. Second, using the MAD approach causes

notable changes to the four indicators. Compared to

the other two methods, the MAD approach tends to

produce lower estimations of OD trips, activity loca-

tions, and activity entropy but higher values for total

stay time. The comparison suggests that certain meth-

ods of handling oscillations in the mobile phone data

could result in unreliable estimates of individual

mobility characteristics. These uncertainties can propa-

gate when the processed results are further used in

human mobility analysis (e.g., OD estimation, dwelling

time estimation, inferring individual activity purposes).
The implications are manifold. First, the varying

impacts of the three methods on mobility estimations

Figure 15. (A–C) Distribution of Hclustering, Htimewin, and Hmad and (D–F) pair-wise comparison of the three methods.
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indicate that the results generated from big data can

be highly dependent on the ways they are processed.

This reveals a fundamental challenge of data-driven

mobility research, especially when the ground truth is

difficult to acquire. A possible solution is to test the

effectiveness of different methods through the integra-

tion of big data and small data. For example, experi-

ments can be designed to collect both the mobile

phone trajectories of users and their actual movement

patterns through surveys. The survey-based observa-

tions can be used as a proxy for ground truth to evalu-

ate the effectiveness of different preprocessing

methods. Second, to what extent data veracity affects

geographic knowledge discovery is case dependent. For

instance, when estimating OD trips from mobile

phone data, different methods might produce quite

different estimations at an individual level. When

these estimations are further aggregated, though—for

example, by administrative districts or traffic analysis

zones—different methods might produce similar spatial

interaction patterns. In this case, even a “wrong” prac-

tice could lead to a “right” conclusion. This is not

always the case, however. Recently, many studies have

performed big data analytics to understand the rela-

tionship between mobility patterns and socioeconomic

status of travelers (Frias-Martinez et al. 2013; Smith-

Clarke, Mashhadi, and Capra 2014; Blumenstock,

Cadamuro, and On 2015; Almaatouq, Prieto-Castrillo,

and Pentland 2016; Pappalardo et al. 2016; Xu et al.

2018; L. Wu et al. 2019). In these studies, a collection

of individual mobility (or sociality) indicators is

derived and used to correlate with or to predict per-

sonal socioeconomic status. In this case, the variations

in the mobility estimations from different methods

could result in different conclusions (e.g., do rich or

poor people conduct more trips). For studies that

develop prediction models (e.g., machine learning or

deep learning models), how mobility indicators are

derived will affect the performance of the models and

their generalization ability. This is related to an

emerging discussion on the replicability and reproduc-

ibility in geospatial research (School of Geographical

Sciences & Urban Planning, Arizona State University

2019). Without carefully examining the data veracity

issue, the results generated from one study or geo-

graphic area might fail to be replicated in others. We

believe that the method proposed in this research—

once calibrated when ground truth becomes avail-

able—could help improve the estimations of human

mobility patterns (e.g., OD trips, daily activity loca-

tions, and dwelling time at these locations) to support

applications in transportation planning and location-

based services. Because oscillation effects also occur in

other types of mobility data (e.g., CDRs [Alexander

Figure 16. The number of occurrences that a cell tower is associated with oscillations (using DM ¼ 0:5). The numbers are aggregated

and summarized at the level of a 1 km � 1 km grid.
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et al. 2015], Wi-Fi data [Lee and Hou 2006; Bayir,

Demirbas, and Eagle 2010]), the proposed method is

useful for other data sets when uncertainty issues need

to be tackled.
We want to point out a few limitations of this

research. First, although the MAD approach tends to

generate higher detection ratios of oscillations, the

approach is not perfect. As demonstrated in the

analysis, the choice of DM controls the tolerance of

oscillation removal, which will affect how mobile

phone trajectories are processed. It is possible, how-

ever, that some oscillations removed by the MAD

approach refer to the actual movements of phone

users, whereas some others that are not removed

could be fake movements. A data set that documents

both users’ mobile phone trajectories and their

actual movements (e.g., through surveys) can be use-

ful for the calibration of DM and further improve-

ment of the MAD approach (e.g., an adaptive

choice of DM given trajectory properties). Moreover,

because a significant proportion of human move-

ments take place along roads and streets, incorporat-

ing road network–based measures (e.g., road network

distance and speed) might further eliminate (or

retain) some of the fake (or actual) movements.

This is one direction for future research. Second, the

three methods and their impact on mobility estima-

tions have been tested and compared over one single

data set. How the findings would generalize in a

broader sense is worth further investigation. In this

study, we have revealed the varying impacts of pre-

processing methods on data characteristics. We

believe that this veracity issue is not unique to the

data set used in this study but exists in other mobile

phone data sets. In the future, we intend to enlarge

the research scope by repeating the experiments over

multiple data sets and across different study areas.

Nevertheless, we hope that this study provides some

insights that can direct better usage of big data for

future mobility studies. It also calls for more atten-

tion to the data veracity issue and its implications

for geographic knowledge discovery.
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Notes

1. When mobile phones are turned on but lose signals
(e.g., traveling underground), no events or records
are documented. Once phones regain signals, either
emerging from underground or entering an area
(e.g., subway station) where a cell tower signal is
available, a CH event is triggered, which indicates a
cellphone’s “movement” from one cell antenna
to another.
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Appendix

Figure A.1. (A–C) Distribution of ODclustering, ODtimewin, and ODmad and (D–F) pair-wise comparison of the three methods.

Origin–destination (OD) trips are generated based on stay duration of 30minutes.
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Figure A.2. (A–C) Distribution of Aclustering, Atimewin, and Amad and (D–F) pair-wise comparison of the three methods. Results are

generated based on stay duration of 30minutes.
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