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Existing studies suggest distance decay as an important geographic property of online social networks.

Namely, social interactions are more likely to occur among people who are closer in physical space. Limited

effort has been devoted so far, however, to quantifying the impact of homophily forces on social network

structures. In this study, we provide a quantitative understanding of the joint impact of geographic distance

and people’s socioeconomic characteristics on their interaction patterns. By coupling large-scale mobile

phone, income, and housing price data sets in Singapore, we reconstruct a spatially embedded social network

that captures the cell phone communications of millions of phone users in the city. By associating phone

users with their estimated residence, we introduce two indicators (communication intensity and friendship

probability) to examine the cell phone interactions among places with various housing price values. Our

findings suggest that, after controlling for distance, similar places tend to have relatively higher

communication intensity than dissimilar ones, confirming a significant homophily effect as a determinant of

communication intensity. When the analysis is focused on the formation of social ties, though, the

homophily effect is more nuanced. It persists at relatively short distances, whereas at higher distances a

tendency to form ties with people in the highest social classes prevails. Overall, the results reported in this

study have implications for understanding social segregation in cities. In particular, the physical separation of

social groups in a city (e.g., residential segregation) will have a direct impact on shaping communication or

social network segregation. The study highlights the importance of incorporating socioeconomic data into

the understanding of spatial social networks. Key Words: distance decay, homophily, mobile phone data,
segregation, social network.

I
n the past two decades, Internet and telecommu-

nication technologies have permeated almost

every aspect of human life, transforming the ways

in which people conduct their daily activities. One

important dimension of human life that has changed

dramatically is social interaction. Technological

advancements have created a “virtual space” (Strate

1999), where new forms of social communications

are emerging and evolving. These new social

channels—such as mobile phones, e-mails, and

online social media—empower people to connect

with others who are thousands of miles away. Unlike

face-to-face communications that require people to

go out and meet in physical space, social interactions

in virtual space hardly demand any travel and seem

to be not constrained by geographic distance. On

the other hand, the dynamics according to which

social ties are created and evolve in an online net-

work have only started to be unveiled, and it is

reasonable to assume that preexisting social ties

based on face-to-face relationships have a strong

influence on the formation of ties in online social

networks. So, although formally there is no geo-

graphic constraint on the formation of ties in online

social networks, it is possible that geographic proper-

ties also play a role in online social networks due to

their tight connections with preexisting (physical)

social networks (Larsen, Axhausen, and Urry 2006;

Carrasco, Miller, and Wellman 2008; Calabrese

et al. 2011).

Debates have emerged on how or whether new

information technologies will change the geographic

properties of human social interactions. The reflec-

tions on the “death of distance” (Cairncross 1997)

and “the end of geography” (Graham 1998) are

among the early works that call for a reconceptuali-

zation of space and place in the information age.

Although relevant debates are still ongoing, it is
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widely acknowledged—sometimes as common

sense—that human social interactions do not occur

in parallel in physical and virtual space. Instead,

they are continuously blending into each other. In

other words, “only by maintaining linked, relational

conceptions of both new information and communi-

cations technologies and space and place will we

ever approach a full understanding of the inter-rela-

tionships between them” (Graham 1998, 181).
Inspired by these reflections, scholars started

exploring the geographic properties of various online

and mobile social networks, with considerable focus

on the “distance decay” effect. This distance effect

has been observed across different types of data sets

and networks, such as Facebook communities

(Goldenberg and Levy 2009; Backstrom, Sun, and

Marlow 2010), networks of bloggers (Liben-Nowell

et al. 2005), and telecommunications (Lambiotte

et al. 2008; Krings et al. 2009; Gao et al. 2013).

One consensus reached by these studies is that the

intensity or probability of human communications

between places decays with geographic distance.

This observation suggests that the relationship

between virtual and physical space is strong: Social

interactions are more likely to occur among people

who are closer in physical space.
The research finding is not too surprising because

we have fewer opportunities to know someone who

is far away. In other words, the lack of physical

interactions has a notable impact on the geographic

dispersal of social networks. One important issue

that has not been addressed, however, is whether

the observed distance decay effect is purely a reflec-

tion of the decreasing opportunities for potential

human interactions. As human beings, we tend to

connect with similar others. The presence of homo-
phily plays an important role in shaping social net-

work structures (McPherson, Smith-Lovin, and Cook

2001). Then, an interesting question worth investi-

gating is this: How do the socioeconomic character-

istics of people and their distribution in physical

space—for example, in a city—affect the geographic

properties of online social networks?
Answering this question has many implications

for urban planning. Social segregation—a long-

standing research topic in geography and sociology

(Massey and Denton 1987; Leo et al. 2016; Le

Roux, Vall�ee, and Commenges 2017; Musterd et al.

2017; Q. Wang et al. 2018)—is a good example. If

online social networks exhibit a distance decay

effect, then a city where rich and poor people are

highly separated and meanwhile clustered are likely

to suffer from a certain level of segregation. The

implication is beyond the traditional understanding

of residential segregation (Massey and Denton

1988). It would imply that the physical separation of

social groups will directly contribute to the emer-

gence of a “communication segregation” in the vir-

tual space. Hence, a secondary question worth

investigating is whether the socioeconomic configu-

ration of a city is the sole driving force of online

social segregations. To be more specific, do people

connect simply because they are close? With dis-

tance being equal, are people more likely to interact

with similar others?
To answer these questions, we perform a case

study in Singapore by analyzing a large-scale mobile

phone data set that captures the communication pat-

terns of 2.6 million people during a period of fifty -

days. A spatial social network is established by

embedding phone users into geographic space based

on their estimated residence. We explore the geo-

graphic properties of the network by examining the

communication intensity and probability of social

ties among different places. By further integrating

income data and a high-resolution housing price

data set, we examine whether places with similar

socioeconomic characteristics tend to maintain

higher levels of cell phone interactions. Different

from previous studies that focus on the distance

decay effect, this study aims to unravel the joint

impact of geographic distance and homophily on the

social network structure. We argue that people’s

social interactions are affected not only by their

physical proximity but also by forces of homophily

in the society. The research findings have many

implications for policymaking that aim to foster

social integration in cities. The research framework

can be applied or extended to better understand

other types of spatial social networks.

Theoretical Context

A social network provides a structural representa-

tion of human relations and interactions. As a

fundamental concept in social science, it has gener-

ated broad interests across many disciplines (e.g.,

sociology, geography, transportation, physics, and

computer sciences). Social networks emerge as a

reflection of personal relations in societies (Fischer
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1982). Such relations are created or maintained

through different kinds of human activities, many of

which would take place, or are empowered by what

happened, in physical space. Therefore, studies of

social networks often consider a spatial context of

social structure, whether explicit or implicit.

Over the years, many studies have incorporated a

spatial dimension into social network analysis

(Stewart 1941; Liben-Nowell et al. 2005; Cranshaw

et al. 2010; Andris 2016). These efforts involve the

conceptualization of social actors (i.e., people), rela-

tions (i.e., social ties), and their linkage with built

environment. Studies of spatial social networks often

link social actors with physical locations—like one’s

home or neighborhood—such that contextual infor-

mation can be leveraged to better understand the

factors that contribute to or hamper the formation

of social relationships.
Enabling a spatial view of social networks is essen-

tial. A typical example is the discovery of a distance

decay effect on social relations (Stutz 1973).

Namely, people tend to socialize more with ones

who are close to them. Because face-to-face interac-

tion is a key form in maintaining social relations,

the distance effect can partly be explained by the

travel cost that is incurred for conducting social

activities. Thus, travel behavior or mobility is con-

sidered an important dimension that explains the

interplay between social relations and distance

(Carrasco, Miller, and Wellman 2008; Cho, Myers,

and Leskovec 2011; D. Wang et al. 2011).
In the past two decades, many online (e.g.,

Facebook) and mobile social networks have emerged.

Studies found that the chances that people form rela-

tions in these networks are still notably affected by geo-

graphic distance (Liben-Nowell et al. 2005; Goldenberg

and Levy 2009; Backstrom, Sun, and Marlow 2010).

Although online social interactions in principle can

occur without a need to travel in the physical space,

the rediscovery of a distance effect suggests that online

social networks partly mirror preexisting social ties,

which are shaped by various constraints in the physical

world. Thus, the spatialization of online social networks

could provide additional insights into human interac-

tions in an online–offline setting.

Beyond reflecting existing social structures, social

networks have been found to influence future activi-

ties and travels (Carrasco, Miller, and Wellman

2008). For example, studies found that telecommuni-

cations between phone users are indicative of their

colocation patterns, a reflection of their social inter-

action potentials (Calabrese et al. 2011; Xu et al.

2017). Therefore, mobile and online social networks

would have an impact on travel behavior and physical

activities, which in turn further affect network dynam-

ics and evolution. Thus, there is a mutual effect

between human travel and online social interactions.
Social relations are not only constrained by geo-

graphic distance. Studies suggest that homophily, or

similarities in people’s sociodemographic characteristics,

is a catalyst of social interactions (McPherson, Smith-

Lovin, and Cook 2001). From the perspective of travel

behavior, great satisfaction might be obtained from

interactions between people with similar background

and therefore individuals are “willing to trade-off extra

(travel) cost” (Stutz 1973, 142) for these interactions.

Because one’s social background can be largely

explained by the underlying built environment (e.g.,

income, racial makeup), the homophily principle would

imply stronger social connections among locations with

similar characteristics.
Although the distance and homophily effects have

been studied separately, their joint impact on social net-

work structures remains underexplored. In particular,

there is a lack of research on quantifying such impact at

intraurban scales and over social networks empowered by

modern information and communications technologies.

This is partially due to the difficulty of coupling large-

scale human interactions with fine-grained sociodemo-

graphic data. Filling this research gap, as this study

attempts to do, has important implications for cities. For

instance, if stronger social connections (e.g., telecommu-

nications) are observed among similar places (e.g., by

income or housing price) after geographic distance is con-

trolled for, this would imply more social travels in the

past or more interaction potential in the future. In other

words, socioeconomic configurations in cities would have

an impact on human interactions in the online space, on

their future travel behavior (in physical space), and, more

important, on socioeconomic segregation in the urban

environment (Farber et al. 2015; Leo et al. 2016; Q.

Wang et al. 2018).

Research Design

From Mobile Phone Data to City-Scale
Social Network

The call detail record (CDR) data set was col-

lected from a major mobile phone operator in

Beyond Distance Decay 3



Singapore. The anonymized data set tracks the com-

munication patterns and location footprints of 4.4

million phone users during a period of fifty days in

2011. When a phone call or text message was initi-

ated by a user, a record was generated by the tele-

communication system, documenting the unique ID

of the caller and the callee, the event type (i.e., call

or text message), the associated timestamp, and the

cell towers to which the users were connected. Such

information allows us to not only extract social net-

work structure but also infer the frequented locations

of users (e.g., home), from which the social network

can be embedded into geographic space.
Note that CDRs are passively generated and the

observations for some users can be quite sparse. By

measuring the number of days with records for each

user, we find a large variation of the level of activity

across the population (Figure 1A). To control the

data sparsity issue, this study focuses on a subset of

users who have at least ten active days of phone

usage. On the one hand, this choice allows us to

focus more on local residents by filtering short-term

subscribers such as tourists. On the other hand, it

would ensure that the number of observation days

for the retained users is high enough to support a

reliable estimation of home location. After this fil-

tering, we are left with a data set of 2.6 million

phone users.
We then extract the social network structure by

measuring the communication patterns among cell-

phone users. Social ties (links) are established

between users (nodes) who have at least one

reciprocal contact during the study period. The asso-

ciated tie strength is measured as the total number

of calls or text messages. Note that we only retain

reciprocal contacts because some of the one-way

communications do not necessarily reflect human

interactions (e.g., robocalls). Performing this step

gives us a social network with a skewed degree distri-

bution (Figure 1B). The average and median number

of social contacts per person are 9.7 and 7.0,

respectively.

Embedding Social Network into Geographic Space

We embed the social network into geographic

space based on the spatial properties of the nodes.

Previous studies have suggested that social ties are

more likely to be observed at shorter distances,

because individuals tend to interact more with their

spatial neighbors (Goldenberg and Levy 2009;

Scellato et al. 2011). One usual practice, therefore,

is to assign a “home location” to users to embed

nodes into geographic space (Scellato et al. 2011).

This study adopts this strategy by first estimating the

home location of each phone user. The estimated

location is then used as the node property for spa-

tial embedding.
Inferring home location from CDR data has been

investigated extensively (Ahas et al. 2010; Isaacman

et al. 2011; Xu et al. 2015; Xu et al. 2017). In this

study, we adopt the method from Xu et al. (2017),

which estimates each user’s home location as the

most used cell phone tower before 06:00 and after

Figure 1. (A) The distribution of number of active days of users. (B) Degree distribution of the extracted social network.
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19:00. After performing the home location estima-

tion, we compute the number of phone users in each

planning area of Singapore1 and correlate it with the

official census population from the Singapore

Department of Statistics (2020). As shown in Figure

2A, we observe a strong correlation between the two

variables, which indicates the robustness of the esti-

mation. Following this step, we perform the spatial

embedding by assigning users to their estimated

home cell phone towers (Figure 2B).

Extracting Social–Spatial Properties of the
Embedded Network

We introduce two indicators, namely, the normal-
ized communication intensity and friendship probability,
to investigate the spatial properties of social network

connections. Given any two cell phone towers Li
and Lj in the embedded network, the normalized

communication intensity between them, IðLi, LjÞ, is

defined as the total communication intensity among

all phone users concerned, normalized by the total

possible friend pairs between these two locations:

IðLi, LjÞ ¼ StrengthðLi, LjÞ
NðLiÞ �NðLjÞ : (1)

Here StrengthðLi, LjÞ denotes the total number of

calls or text messages exchanged between phone

users assigned to Li and Lj. Note that within-cell

communications are not counted. NðLiÞ and NðLjÞ
refer to the total number of phone users (nodes)

assigned to Li and Lj, respectively. In other words,

NðLiÞ �NðLjÞ describes the total possible social links

that can be established between the two locations.
IðLi, LjÞ measures the likelihood of communica-

tions between a pair of locations, and the value is

largely affected by the tie strength, or the communi-

cation frequency between social links. Therefore, we

compute another measure, the friendship probability,

by considering only the presence of social ties:

FðLi, LjÞ ¼ TiesðLi, LjÞ
NðLiÞ �NðLjÞ : (2)

Unlike other online social networks (e.g., Facebook)

in which social ties are well defined, cell phone

communications can only provide an indication of

people’s social relationships. To address this chal-

lenge, we define social links as cell phone user pairs

with at least one reciprocal contact during the study

period. Although this is not a perfect measure, a pre-

vious study based on large-scale telecommunication

data suggests that a significant proportion of phone

users with at least one reciprocal contact have

shared the same place with each other at the same

time (Calabrese et al. 2011). These colocation pat-

terns are indicative of coordination calls and face-to-

face interactions. Therefore, the definition of social

links here provides a reasonable proxy of existing

Figure 2. (A) By aggregating phone users based on their estimated home location, we compute the number of users at the level of

Singapore’s planning area. The numbers are highly correlated with the official census population (Pearson’s r¼ 0.96, p value < 0.001).

(B) The social network is embedded into geographic space by assigning phone users to their home cell phone tower (Voronoi cells are

used to approximate towers’ service areas).
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social ties between phone users and also excludes

one-way communications (e.g., advertisements, robot

calls) that do not reflect interpersonal relationships.
Thus, TiesðLi,LjÞ in Equation 2 denotes the total

number of social links between phone users assigned to

Li and Lj. Because the distance between cell phone

towers can be easily computed, the two indicators (I
and F) can thus be used to examine the spatial proper-

ties (e.g., distance decay) of social network connections.

Incorporating Socioeconomic Characteristics
of Locations

To evaluate the impact of locations’ socioeconomic

similarities on the social network structure, we con-

sider another housing price data set. The data set,

which is acquired from a private company (99.co

2012) in Singapore, includes information of thousands

of residential properties collected between 2011 and

2012. Each record in the data set documents the infor-

mation of a single housing property, such as the prop-

erty type (condo, landed, or Housing Development

Board [HDB]2), geographic coordinates (latitude and

longitude), and the total sale price of one housing

unit. Because users are assigned to their home loca-

tions, the housing price data set can be used to reflect

the socioeconomic characteristics of places and the

corresponding phone users.
We use the housing price data set instead of

income data collected by census because individual

housing properties provide a fine-grained view of the

socioeconomic characteristics of the places. The data

set can be well integrated with the spatial social net-

work at the cell phone tower level. The income data

from the census are usually reported at a coarser resolu-

tion and cannot capture well the spatial heterogeneity.

Before we use the data set to label locations in

the network, we perform a correlation analysis

between housing price and income at the level of

planning areas. The income data are acquired from

the 2012 Household Interview Travel Survey

(HITS) provided by the Singapore Land Authority

(2012). By extracting individuals from HITS who

reported their monthly income (12,111 in total), we

compute the average monthly income of respondents

in each planning area. We then compute the average

sale price of housing units in each area. We find that

the two variables match each other relatively well

except for a few outliers (Figure 3A). Through further

exploration, we think this inconsistency is partially

caused by the sampling bias during the household

interview survey. For example, only two respondents

were sampled in Southern Islands and both of them

reported a monthly income of 500 Singapore dollars

(SGD). The island is well known for its many luxury

residential neighborhoods, however. After removing

these three outliers, the Pearson’s correlation coeffi-

cient between the two variables increases to 0.88 (p <
0.001), which suggests that housing price could well

indicate the socioeconomic level of places (Figure 3B).
In this study, we use the average housing price to

label each cell phone tower. Because cell phone

Figure 3. (A) The relationship between mean housing price and average monthly income at the level of Singapore’s planning area. (B)

The correlation between the two variables after removing the three outliers. Note: SGD¼Singapore dollars; HITS¼Household

Interview Travel Survey.
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towers are point features, we use Voronoi cells to

approximate their service areas (Figure 2B). We

then identify the housing properties that fall within

each cell and compute the average housing price to

label the corresponding cell phone tower. After this

step, each cell phone tower Li will be labeled using a

housing price value PrðLiÞ: This value empowers us

to examine the normalized communication frequency

and friendship probability between places with vary-

ing socioeconomic characteristics. Note that for

each Voronoi cell we have computed the standard

deviation of the housing price values (within-cell

standard deviation), and compared it with the over-

all standard deviation of the city. We find that the

median ratio of within-cell standard deviation and

overall standard deviation is 0.16. This result sug-

gests that housing price values are relatively homo-

geneous within the Voronoi cells and our approach

could capture the heterogeneity of residential hous-

ing prices in Singapore.

Results

Distance Decay Effect of Cell Phone
Communication Network

In this section, we examine the distance decay

effect of the cell phone communication network.

Following the definitions of IðLi, LjÞ and FðLi, LjÞ,
we measure normalized communication intensity and

friendship probability by aggregating pairs of cell

phone towers separated at different distance values

(d). The functions of I(d) and F(d) allow us to

explore the impact of geographic distance on the

network structure. As shown in Figure 4, both func-

tions show a linear trend at the log–log scale, which

indicates that each of the two variables (I(d) and

F(d)) and geographic distance (d) generally follow a

power law. Fitting the two functions yields an expo-

nent of �0.82 and �0.74, respectively. In particular,

the likelihood of cell phone communications among

people who live at a distance of d follows a distance

decay IðdÞ � d�0:82, whereas the probability of social

ties at a given distance follows FðdÞ � d�0:74: Note

that the observed exponents (�0.82 and �0.74) are

larger than the ones derived from some other studies

using online social networks. For example, a study

finds that friendship probability observed from the

LiveJournal network follows a distance decay

pðdÞ � d�1:2 (Liben-Nowell et al. 2005). Another

study based on Facebook data found that friendship

probability is inversely proportional to geographic

distance pðdÞ � d�1:0 (Backstrom, Sun, and Marlow

2010). Compared to these online social networks,

cell phone communications observed in this study

decay more slowly with geographic distance.
The distance decay effect suggests that cell phone

communications (I) or social connections (F) are

more likely to occur among people whose residences

are close to each other. An intuitive interpretation

of IðdÞ � d�0:82 is that neighborhoods separated at a

distance of 10 km tend to exhibit only 15 percent

Figure 4. (A) Normalized communication intensity decays with geographic distance. Fitting the data with a power law function yields

IðdÞ � d�0:82: (B) The probability of friendship also shows a distance decay effect, FðdÞ � d�0:74:
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(10�0:82 � 0:15) of the communication strength

compared to neighborhoods that are 1 km apart.

Similarly, friendship probability between neighbor-

hoods decreases to 18 percent (10�0:75 � 0:18) when
distance reaches 10 km. Note that I(d) decays faster

than F(d), meaning that people tend to preserve

more friendship with distance. The intensity of com-

munication with these friends, however, is weaker

than that with closer friends (i.e., “good friends are

close to home”).
The distance decay effects have notable implica-

tions for socioeconomic segregation in cities. If a

city has a high level of residential segregation—

namely, residents with similar socioeconomic charac-

teristics tend to live close to each other—the city is

likely to have a certain level of communication (or

social network) segregation. In other words, informa-

tion tends to spread among similar others in a city

with severe residential segregation.

To better understand the spatial configuration of

housing prices in Singapore, we measure the spatial

autocorrelation based on the average housing price

derived at the Voronoi cells (Figure 5A). In particu-

lar, we compute the global Moran’s I using the built-

in function provided by ESRI’s ArcGIS product. We

use Euclidean distance to measure the distance

between cells and the inverse distance method to

conceptualize their spatial relationships. As shown

in Figure 5B, the analysis yields a Moran’s index of

0.29 with a z score of 68.63. This indicates that

housing prices—which highly reflect the income

level of residents (Figure 3B)—are highly clustered.

The clustering patterns suggest that neighborhoods

with similar housing price values are generally closer

than dissimilar ones. Given the distance decay effect

of cell phone communications, the clustering pat-

terns would imply more interactions between these

similar neighborhoods, which contributes to a cer-

tain level of communication segregation.

Impact of Socioeconomic Characteristics on
Communication Intensity

Previous studies have discussed the existence of

homophily in social networks, namely, people’s

social connections tend to be homogeneous with

regard to many sociodemographic characteristics

(McPherson, Smith-Lovin, and Cook 2001). Given

the distance decay of cell phone communications

observed from the mobile phone data set, an intrigu-

ing question is whether people tend to connect with

similar others when geographic distance is con-

trolled. Although this cannot be investigated at an

individual level due to lack of personal socioeco-

nomic data, we examine whether places with similar

housing prices would have relatively more interac-

tions with each other than what would be predicted

by a distance decay effect.
To achieve this, we sort the Voronoi cells based

on the average housing price derived previously. We

Figure 5. (A) The spatial patterns of average housing price at the level of Voronoi cells. (B) Global Moran’s I is computed over the

housing prices at these Voronoi cells. The analysis and report are derived from ESRI’s ArcGIS product.
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divide them into five classes such that each class of
cells covers 20 percent of the population (i.e., phone
users). We label them from C1 to C5, with averaging

housing price sorted in ascending order. In other
words, C1 denotes areas with the lowest average
housing price and C5 generally points to the rich

neighborhoods. We adopt this classification method
instead of other alternatives (e.g., separating the top
1 percent of population from others) such that each

class covers adequate amounts of phone users or
Voronoi cells. It ensures that we have enough obser-
vations of cell phone communications among differ-

ent classes at varying distance values.
For each pair of class Ci and Cj, we measure their

normalized communication intensity at different dis-
tance values. Figure 6 shows the results. Each sub-

plot demonstrates the communication intensity from
each class to the five classes. Similar to the finding
in Figure 4A, the communication intensity between

classes decays with geographic distance. Interestingly,
though, when looking at the interactions among clas-
ses, we find that cells with similar housing prices tend

to have higher communication intensities when dis-
tance is controlled. For instance, C1 tends to interact
more with their own or nearby classes at a variety of

distance values (Figure 6A). This homophily effect is
even more obvious when looking at C5 (Figure 6E),
which consistently maintains the highest level of

interaction within their own class.
To further elaborate this, we visualize, for each

class, the classes that have the most and second

most interactions with them at different distance
values. The results are shown in Figure 7. As can be
seen, C1 and C2 tend to interact more with their
own or nearby classes at most of the distance values.

Again, class C5 exhibits a relatively stronger homo-
phily effect compared to other classes. When dis-
tance is being controlled, these places will always

Figure 6. Normalized communication intensity among the five classes.
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have the strongest interactions with their peers.

Class C4 presents a pattern that is different from the

other classes. We find that those in class C4 do not

exhibit the highest level of interaction with them-

selves. Rather, they tend to interact more with clas-

ses one or two steps downward. It is possible that

C4, which points to many people in the upper mid-

dle class, tends to interact more with lower socioeco-

nomic classes. For instance, many occupations that

are well paid (e.g., doctors, lawyers) have frequent

communications with different socioeconomic tiers.

For class C5, however, which points more to the

extreme wealth, a clear “rich club” effect can be

observed. Summarizing, we can conclude that,

although homophily seems to have a significant

effect on the intensity of communication, other

factors such as social structures are likely to have a

significant, and possibly heterogeneous across social

classes, effect as well.

Formation of Social Ties

The communication intensities among the five

classes have demonstrated the impact of homophily

on the social network structure. Another interesting

question is whether the formation of social ties

would follow the homophily principle. To investi-

gate this question, we perform another analysis by

replacing communication intensity (I) with friend-

ship probability (F), the measure that describes the

formation of social ties. By deriving the friendship

probability among the five classes at different

Figure 7. The classes that interact most and second most with each of the five classes at a given distance. The size of the dot is

proportional to the normalized communication frequency between the corresponding classes.
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distance values, we find that the effect of homophily

still persists but only when geographic distance is

relatively short (Figure 8). Strikingly, when distance

increases to a large value (e.g., over 10 km), the clas-

ses that have the highest friendship probability with

a given class tend to be C4 or C5. This observation

is reaffirmed by Figure 9, which demonstrates the

classes that have the highest and second highest

friendship probabilities with each of the five classes

at a given distance.
The results reveal an interesting aspect of social

dynamics beyond the homophily principle. When

people’s residencies are far away from each other,

the upper classes in the society are more likely to

know or to be known by others. In other words, the

formation of “long-range” ties tends to favor privi-

leged people. Again, this might be related to the

occupations of the upper classes as well as the over-

whelming attention they receive from other social

groups. For example, it is difficult for someone to

connect with a regular person who is geographically

distant. It is easier for a famous or rich person to be

known by others regardless of where he or she

resides in a city, however. This also connects to

Milgram’s (1967) small-world experiment and the

theory of six degrees of separation. Namely, it is

enough to have a “famous” friend reasonably close to

be able to reach many other people in the world.

Our results suggest that these “famous” and well-con-

nected people are likely to be rich.
Note that although the formation of long-range

ties tends to favor the upper classes, the intensities

of cell phone communications at large distances are

still higher among similar social classes (shown in

Figure 6 and Figure 7). This indicates that for the

wealthy populations, their connections with the

middle and lower classes are more likely to be weak

ties (Granovetter 1977) and the majority of their

interactions are still with similar others (e.g., other

rich people).

Figure 8. Friendship probability among the five classes.
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Homophily Distance

The results presented so far have demonstrated

the joint impact of geographic distance and homo-

phily on people’s cell phone communications. Given

this, it is possible that two neighborhoods with simi-

lar socioeconomic characteristics—but geographically

distant—could have a higher communication inten-

sity than two close neighborhoods with different

characteristics. Figure 10A shows an example of this

scenario. To explicitly quantify this effect, we adopt

the concept of homophily distance (Xu et al. 2019)

and compute this metric between two classes. Given

two classes Ci and Cj, the homophily distance Dh is

defined as the geographic distance such that the

communication intensity between Ci and its peers

(Ci) at Dh is roughly equal to the communication

intensity between Ci and Cj at the minimal distance

(i.e., when they are in close proximity). A large
value of Dh suggests that Ci would overcome the
friction of geographic distance to communicate with

similar others. Here, we define the minimal distance
as 1 km to reflect the concept of close proximity. To
calculate Dh of Ci (from class) and Cj (to class), we

fit a linear function of communication intensity with
distance at the log–log scale (Figure 6). The point
where the communication intensity at the minimal

distance (1 km) intersects with the fitted line gives
the value of Dh.

We compute Dh for all combinations of classes.
The results are shown in Figure 10B. Almost all

values are above 1 km, indicating that places of the
same class tend to maintain an adequate level of
communication even when they are far apart. For

Figure 9. The classes that have the highest and second highest friendship probabilities with each of the five classes at a given distance.

The size of the dot is proportional to the friendship probability between the corresponding classes.
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instance, the homophily distance from C1 to C5 is

2.25 km, meaning that the communication intensity

between C1 and its peers that are Dh ¼ 2.25 km

away is comparable to the intensity between C1 and

C5 at a distance of 1 km. This homophily effect is

more pronounced when looking at the value from

C5 to C1 (Dh ¼ 3.75 km). Note that the five classes

are defined using the average housing price at the

Voronoi cells and some of them could point to

mixed-income neighborhoods. Thus, the homophily

distances might be even higher if measured at the

household or individual level. We are not able to

measure this, however, due to lack of individual-

level socioeconomic data. The results suggest that

colocation or geographic proximity does not always

ensure frequent communications. The socioeconomic

similarity between places and the underlying popula-

tions plays an equally important role in shaping the

structure of the cell phone communication network.

Discussion and Conclusion

In this study, we establish a spatially embedded

social network by coupling large-scale information

on people’s cell phone communications, residential

locations, and socioeconomic characteristics. The

findings suggest that cell phone interactions of peo-

ple in Singapore are affected by not only geographic

proximity but also how social groups are distributed

in the urban environment. We argue that the spatial

organization of social groups in a city, which is often

directed by urban planning policies (e.g., zoning

strategies; Jacobs 2016), will have a direct impact on

how people communicate in the virtual or

online space.
By embedding phone users into urban space based

on their estimated residence, we explore the geo-

graphic properties of the cell phone communication

network. The results show that both communication

intensity and friendship probability among places fol-

low a power law decay with geographic distance.

That means that communications are more likely to

occur among people who live close to each other.

By further exploring the average housing price across

places—which highly reflects the income level of

residents in Singapore (Figure 3)—we find that the

housing price values are highly clustered (Figure 5).

Such an uneven distribution along with the distance

decay effect tends to cause an imbalance of cell

phone communications among social classes. The

results indicate that physical separation of social

groups in a city (e.g., residential segregation) will

have a direct impact on shaping communication or

social network segregation.
By further examining cell phone connections

among places with different housing price values, we

Figure 10. (A) Given the effect of distance decay and homophily, it is possible that two neighborhoods with similar socioeconomic

characteristics but geographically distant could have an even higher communication intensity than two close neighborhoods with

different characteristics. (B) The value of homophily distance for all combinations of classes.
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find that it is not only geographic proximity but also

the principle of homophily that govern people’s cell

phone communications. In particular, places tend to

have a higher communication intensity with ones that

have similar housing price values when distance is con-

trolled (Figure 6 and Figure 7). This homophily effect

is reaffirmed by looking at the homophily distances

among social classes (Figure 10). For instance, the com-

munication intensity between the upper class (C5) and

its peers at a distance of 3.75km is comparable to the

level between C5 and the lowest class (C1) who are

immediately nearby. That means that social classes

would overcome the friction of distance or resist the

“convenience of colocation” to connect with similar

others. Note that we also observe this homophily effect

when examining friendship probability, the indicator

that describes the formation of social ties (Figure 8).

Interestingly, though, the homophily effect is observed

primarily at short distance values, or across all distance

values for the upper class C5. When distance is large,

the middle upper classes (C4 and C5) are always the

ones that have the most connections with other socio-

economic tiers (Figure 9). The result reveals a

“celebrity effect” on the formation of social ties.
The findings on the homophily effect suggest that

neighborhoods with similar characteristics, even

when they are far apart, could contribute to the

emergence of social network segregation. Therefore,

traditional placed-based measures, such as creating

mixed-income neighborhoods, might not be enough

per se to accomplish a high degree of social mixing

in the online space. Novel online activities that can

actively bridge different social classes can possibly

promote social cohesion of cities given the preva-

lence of social media platforms and the recent public

health emergency (COVID-19; Oliver et al. 2020)

that further restricts physical human interactions.
Our study suggests that geographic proximity and

homophily are two notable forces that jointly shape the

structures of social networks. Although this study

focuses on Singapore, we believe these two forces have

a far-reaching impact on human interactions in cities.

Because classic spatial interaction models (e.g., gravity

models) have a specific focus on modeling the distance

effect, future work that aims to model or explain spatial

social networks could incorporate socioeconomic char-

acteristics as a generic factor.
We want to point out a few limitations of this

research. First, social ties in this study are defined as

cell phone user pairs with at least one reciprocal

contact during the study period. Although this mea-

sure, as suggested by a previous study in Portugal

(Calabrese et al. 2011), was indicative of face-to-

face interactions and therefore some sort of social

relationships, this evidence does not immediately

generalize to the city of Singapore, which is the sub-

ject of this study. Hence, we acknowledge that the

definition based on reciprocal phone contact pro-

vides a coarse indication of social ties in Singapore.

Second, social interactions in this study are mea-

sured using phone calls and text messages. Although

they accounted for a notable fraction of human com-

munications in 2011 (when the data set was col-

lected), people in Singapore were adopting social

media (e.g., Facebook, Twitter) at that time as new

channels of social interactions. In the future, it

would be meaningful to examine the robustness of

the findings by incorporating social media usage

(Crandall et al. 2010; Kumar, Novak, and Tomkins

2010; Xi, Calder, and Browning 2020) into the anal-

ysis (e.g., Twitter mentions and follower–followee

relationships). For instance, a recent work based on

geolocated Tweets (Heine et al. 2021) observed a

certain degree of mobility homophily in the city of

Stockholm, hinting at a possible robustness of our

findings to social media data sets. Third, this study

uses housing price as the variable to account for

homophily. There exist other factors, such as ethnic-

ity, that would affect people’s communication pat-

terns. Because our analysis is conducted at the cell

tower level, we are not able to obtain information

on ethnicity groups at such a fine spatial resolution.

Fortunately, the Singapore government introduced

the Ethnic Integration Policy (EIP) in 1989 for

HDB estates. The EIP sets limits on the total per-

centage of a block or neighborhood that can be

occupied by a certain ethnicity. Given that HDB

estates host more than 80 percent of residential pop-

ulation in Singapore, the EIP tends to neutralize the

impact of ethnic segregation on our results. We do

think it is important, though, to consider these

socioeconomic variables in future works (e.g., eth-

nicity and education background) to depict a more

holistic picture of homophily in spatial

social networks.
This study demonstrates the importance of con-

ceptualizing and modeling social networks in geo-

graphic space (Andris 2016). It also calls for more

efforts on coupling physical and virtual (online)

spaces for studying human dynamics (Shaw and Sui
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2020). Although exploratory in nature, this study

points to a few avenues for future research. For

instance, it would be meaningful to incorporate

socioeconomic similarity of places into spatial inter-

action models (Zipf 1946; Jung, Wang, and Stanley

2008; Simini et al. 2012) to better predict structures

of spatial social networks. It is also possible to detect

changes of socioeconomic environments (e.g., gentri-

fication) in cities by monitoring the interactions

among neighborhoods and how they evolve through

time and space (Zhu et al. 2020).
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Notes

1. Planning areas, also known as DGPs, are the primary
census divisions of Singapore created by the Urban
Redevelopment Authority (URA). There were a total
of fifty-five planning areas in Singapore at the time
when the CDR data were collected (see https://en.
wikipedia.org/wiki/Planning_Areas_of_Singapore).

2. HDB is a type of residential housing property that
is publicly governed and developed in Singapore.
The HDB flats were built primarily to provide
affordable housing.
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