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Abstract—Electric vehicles (EVs) currently face formidable
challenges in promotion, i.e., short driving ranges, long charg-
ing times, and few charging stations, thereby limiting their
acceptability to taxi drivers. Leveraging massive-scale taxi GPS
trajectory data, we present a novel real-time route recom-
mendation system for electric taxi (ET) drivers. Taxi travel
knowledge, including the probability of picking up passengers
and the distribution of destinations, is learned from the raw GPS
trajectories. Considering the cascading effect of route decision
making, consecutive ET actions are modeled with an action tree.
The corresponding expected net revenue is estimated based on the
learned knowledge. A prototype online system is developed for
providing route recommendations, e.g., when to go to a charging
station or cruise on certain roads. An experiment in Shenzhen
demonstrates that the average daily net revenue of ET drivers is
better than that of 76.2% of gasoline taxi drivers. The presented
approach not only increases the revenue of ET drivers in the
short term but also improves the viability of EVs in the long
run.

Index Terms—Electric taxies, Action tree search, Taxi recom-
mendation, GPS trajectories.

I. INTRODUCTION

ELECTRIC vehicles (EVs), along with autonomous ve-
hicles [1] and connected vehicles [2], are bringing dis-

ruptive innovations to urban transportation [3]–[5]. Taxies,
the most used vehicles in cities, have attracted considerable
attention for electrification [6]. Several cities, such as New
York, Shenzhen, and Beijing, have launched initiatives to
promote the use of EVs in the taxi industry. In comparison
to gasoline vehicles, however, EVs still have unignorable
disadvantages at present, such as short driving ranges [4]
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and long charging times (0.5-10 hours) [3], [7]–[9]. The long
charging durations in particular will sharply reduce the on-
road service times of electric taxies (ETs) [6], [7], [10].
These shortcomings, accompanied with low gas price, are
likely to demotivate people and corporations from adopting
EVs. Hence, the replacement of gasoline vehicles in the
taxi community is still slow because taxi drivers tend to
pursue high daily revenue with continuous driving. Li-ion
battery and super-charging technologies can greatly improve
EVs’ performance in the future. But widely commercializing
those technologies and deploying new charging infrastructure
take time. Consequently, the widespread adoption of ETs is
currently facing great challenges, thus highlighting the need
for effective policies and strategies to promote ETs [11], [12].

Many efforts have been made to improve the acceptance of
ETs, such as EV subsidy policies [10], optimally locating ET
charging stations [6], and encouraging smart taxi operations
[13]. In terms of taxi operations, traditional studies [14]–[18]
have focused on intelligent route recommendation strategies
for gasoline taxies. For example, Yeun et al. [19] developed
an intelligent ride-sharing route recommendation framework
that suggests the best route with the highest probability of
finding compatible customers. Furthermore, knowledge of
typical urban taxi travel, e.g., travel distance, travel time,
and the spatial distribution of taxi demand [20], [21], can be
used to improve route recommendations for taxi drivers. Kong
et al. [22] revealed hidden human mobility patterns and the
pick-up/drop-off relationship based on raw trajectories. They
developed a taxi service recommendation model based on a
Gaussian regression process to improve taxi drivers’ profits
and enhance passengers’ travel experience. Yuan et al. [23]
recommended routes matching vacant taxies and clients for
gasoline taxi drivers. Qu et al. [24] recommended profitable
taxi driving routes with minimal expected driving distances
by estimated the probabilities of picking up passengers and
the capacities at different locations from taxi GPS trajectories.
Although these methods improve the performance of gasoline
taxi drivers, they do not perform well for ETs, mainly for
the following reasons: 1) currently, EVs require more than
30 minutes to fully recharge, thereby lowering their efficiency
in serving clients [10], and 2) charging stations are spatially
sparse, thus increasing ET drivers’ anxiety about range [25].

Several studies have been devoted to route recommendation
for ETs based on certain effective strategies, such as max-
imizing drivers’ revenue by considering the dynamic price
of electricity [26] and balancing the utilization of charging
facilities to reduce social cost [27]. Yang et al. [13] proposed
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a game-theory-based method to reduce the potential service
income loss of ETs, which considered the queuing time
and the long charging duration at charging stations. Tian et
al. [25] predicted ET drivers’ recharging intentions and the
states of charge of ETs to estimate the queuing time at a
charging station. They further developed a charging station
recommender to decrease the waiting and detour times for
ET recharging. However, those studies mainly focused on the
interaction between ETs and charging facilities, neglecting the
question of optimal routes for finding passengers. Recently,
Tseng et al. [12] presented an ET service strategy to immedi-
ately maximize the expected net income of drivers’ passenger-
finding and recharging actions, but they underestimated the
influence of the recharging action on drivers’ revenue. These
achievements focused on the interaction between ETs and
charging facilities. However, they overlooked the potential
influence of taxi service over the next several hours. From the
daily cycle perspective, the actions of cruising on the road to
find passengers and recharging at stations should be further
coordinated. Thus, a comprehensive route recommendation
method is necessary for ET drivers.

Massive-scale historical taxi GPS trajectory data contain
rich spatial-temporal knowledge of taxi travel in a city, such
as the distributions of taxi demand and clients’ destinations
and the taxi travel rhythm [23], [28], [29]. These data provide
useful insights for deeply understanding taxi travel. Therefore,
they enable us to simultaneously coordinate passenger deliv-
ery, cruising and recharging for ETs.

Motivated by current shortcomings and damped promotion
of ETs, this study presents a comprehensive real-time route
recommendation system for ET drivers to improve their net
revenue. Knowledge of taxi travel is learned from massive-
scale raw GPS trajectory data. The sequential actions of ET
drivers, including the cruising on the road and the recharging
at stations, are modeled by Markov Decision Process (MDP).
The spatial-temporal expected net revenue (ENR) of potential
ET actions is estimated using the learned knowledge. A
spatial-temporal ET action tree is proposed to model the ETs’
consecutive decision to maximize the expected net revenue.
A prototype of an online route recommendation system is
developed. The experimental results show that the developed
system significantly outperforms baseline methods.

The main contributions of this study are as follows:
• A comprehensive route recommendation system for

ET drivers is developed, which incorporates the cruising
on the road and the recharging at stations.

• A probabilistic action-based tree (ABT) recommen-
dation method is proposed to improve the ENRs of ET
drivers over a long time period, which is learned from
massive gasoline taxi GPS trajectories.

• A speed-up strategy is developed to accelerate the
computing process and thus facilitate real-time ET route
recommendations to meet the needs of practical applica-
tion.

• An intensive experiment demonstrates that the presented
approach is superior to baseline methods. Various ET
settings and a sensitivity analysis are also considered to
evaluate the performance of the proposed approach.
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Fig. 1. Cruising, recharging and consecutive decisions of ET drivers in two
steps.

The remainder of this paper is organized as follows. Section
I defines the route recommendation problem for ET drivers.
Section III describes the proposed method. Section IV reports
the experiment and presents the comparison of results. We
conclude this work in Section V.

II. PROBLEM DEFINITION

Taxies naturally traverse roads to find and deliver passen-
gers. Compared to refueling of gasoline taxies, ETs spend
more time in recharging at charging stations. Based on the
ET driving cycle, we assume the following:
• An ET driver cruises on the road to find potential pas-

sengers.
• After picking up a passenger, An ET driver will imme-

diately travel to the passenger’s destination.
• An ET driver can recharge his or her ET only at charging

stations.
• After dropping off a passenger, an ET driver will either

cruise to find his or her next passenger or go to a charging
station.

Fig. 1a presents an example of an ET at a road junction without
any passenger aboard. The ET driver has three possible
actions: (i) cruising on road r1, (ii) cruising on road r2, or (iii)
going to a charging station while rejecting passenger pick-up.

A. MDP Definition

We utilize an MDP to describe the driving and recharging
decisions of ET drivers.

State: The state of an ET is defined as a triple s = (i, e, t) ∈
S, where i ∈ I is a road junction, denoting the current
position; e is the remaining battery capacity of the ET; and
t ∈ T is the time in a day.

Action: An action is defined as a = (i→ j, θ) ∈ A, where
i → j denotes the travel from position i ∈ I to j ∈ I; θ ≥ 0
denotes the recharging duration if the ET recharges at a station
located at junction j. There are two types of actions:

i. The cruising action, denoted as a ∈ Ac, indicates that
the vacant ET cruises, finds and delivers passengers. The
movement i→ j of a cruising action is confined in neighbor
junctions, that is, there must be a road rij that connects i and
j. The recharging duration is always zero, θ = 0.

ii. The recharging action, denoted as a ∈ Ar, indicates that
the driver will go to a charging station at j and recharge for
θ > 0 minutes. The locations of all available charging stations
form a set, C.
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In accordance with the real-world taxi service scenario, an
ET driver will refuse to pick up any passenger while on the
way to a charging station. Here, we only focus on cruising
routes and charging options.

Furthermore, we define n ≥ 1 consecutive actions as an
action sequence ~An = (a1 → a2 → ...→ an). Fig. 1b shows
the example of all consecutive actions of the ET in two steps.

State Transition: The next state s′ of an ET depends on
the current state s and the action a it takes. For example, the
cruising action will change the position and deplete the battery,
while the recharging action replenishes the power for the ET
battery. Under the assumptions that an ET in state s = (i, e, t)
is performing a cruising action a = (i → j, θ = 0) and that
the probability of successfully picking up a passenger on road
rij at time t is P s

t (a) = P s
t (rij), the transition to the next

state s′ can be described as follows:
i. If the ET fails to pick up any passenger, s′ = (j, e −

E(i, j), t + Tt(i, j)), where E(i, j) and Tt(i, j) are the elec-
tricity and time, respectively, consumed when traveling from
i to j. In this study, we calculate Tt(i, j) using historical
taxi trajectories. Note that Tt(i, j) can be refined by real-time
traffic to achieve better accuracy [20].

ii. If the ET successfully picks up a passenger, s′ =
(k, e − E(i, j) − E(j, k), t + Tt(i, j) + Tt(j, k)), where k is
the destination of the passenger. Note that the probability of
picking up a passenger with a specific destination k ∈ I is
P s
t (a, k) = P s

t (rij , k), and P s
t (a) =

∑
k∈I P

s
t (a, k).

iii. If the ET performs a recharging action, s′ = (j, e −
E(i, j) + θ · α, t + Tt(i, j) + θ), where α is charging rate
(kW).

B. Expected Net Revenue (ENR)
An ET driver will earn rewards by taking actions. Here, the

reward is defined as the net revenue. For a trip from i to k,
the net revenue is as follows:

R(i, k) = R∗(i, k)− C(i, k) (1)

where R∗(i, k) is the revenue generated by traveling from i to
k, which can be calculated based on the time and total distance,
and C(i, k) = E(i, k) · β is the product of the consumed
electricity and the electricity price β (CNY/kWh). Clearly, a
trip without a passenger earns no profit, i.e., R∗(i, k) = 0.

The net revenue of an action varies with different destina-
tions of the passenger. Considering the pick-up probability and
the distribution of passengers’ destinations, the ENR of one
ET trip can be represented by (2):

E[R(s, a)] = E[R(i, j, t, a)] =
∑
k∈I

[P s
t (a, k)R(j, k)]−C(i, j) (2)

where E[] denotes the expectation.
Furthermore, the ENR of a set of sequential actions ~An =

(a1 → a2 → ...→ an) can be calculated as shown in (3):

Rn(s0, a1) =
∑
k∈I

[P s
t (a1, k)Rn−1(sk, ak)]

+ (1− P s
t (a1))Rn−1(s

′, a2) + E[R(s0, a1)]

(3)

where R0(s, a) = 0; sk and s′ are the next states of s0 if
the ET successfully and unsuccessfully picks up and delivers

a passenger to k by a1, respectively; and ak denotes an action
that the driver may take in state sk. E[R(s, a)] can be denoted
as R1(s, a).

To recommend the optimal route for ET drivers, we should
find the best action sequence to maximize the ENR, in other
words, a path with maximum ENR in Fig. 1.

C. Electricity Constraints

Due to the limitation of the driving range and the spatial
distribution of charging stations, some actions are infeasible
for an ET when the remaining battery capacity e is insufficient
to reach some station j ∈ C. In addition, ET drivers need to
reserve a certain level of remaining battery capacity, denoted
as e, in case of an emergency, e.g., traffic congestion. To
guarantee at least e before arriving at a charging station, the
feasibility of one action is represented by (4).

e− E(i, j)−min
h∈C
{E(j, h)} > e (4)

Hence, the feasible actions are necessarily confined to a
subset of A, which contains all actions that satisfy (4).

On the other hand, some specific destinations k of passen-
gers are not reachable when e is insufficient for driving to any
charging station after arriving at k. The ET driver has to reject
those passengers. The reachable passenger destinations for an
ET in state s = (i, e, t) taking action a = (i → j, θ = 0)
should satisfy (5):

e− E(i, j)− E(j, k)−min
h∈C
{E(k, h)} > e (5)

We denote the left side of (5) by L(s, j, k) for simplicity.
Therefore, the probability of successfully picking up and

delivering a passenger with an unreachable destination k when
taking an action a is zero, that is, P s

t (a, k) = 0.

D. The ET Route Recommendation Problem

The objective of the ET route recommendation problem
considered in this work is to improve the net revenue of
ET drivers by recommending routes that maximize the ENR
of multiple future actions, considering both paths for finding
passengers and going to charging stations.

The ET Route Recommendation Problem: Given an ET
with a state s0 and a fixed number of future actions n ≥ 1, find
and recommend the best action sequence ~A∗n that maximizes
(3) for the ET driver.

III. METHOD

We propose a comprehensive real-time ET recommendation
system to receive the real-time requests from ET drivers and
provides timely route recommendation. The recommended
route is a sequence of cruising and recharging actions ~A∗n,
as shown in Fig. 2. This system consists of an offline process
and an online process. In first process, massive-scale historical
taxi GPS trajectory data are mined to extract essential taxi
knowledge. By integrating the knowledge with the topology
of the road network, an offline ABT is built to find the
optimal action by considering both cruising and recharging
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Fig. 2. Framework of the proposed system.

actions. The edge weights of the ABT are pre-estimated and
stored in a lookup table for online recommendation. In the
second process, the developed system receives ET drivers’
real-time requests, and then, provides routes recommendation
by building ABTs immediately.

A. Learning Knowledge from Taxi Trajectories

Learning knowledge from taxi trajectories includes three
steps: map matching, taxi trip extraction, and statistical learn-
ing.

1) Map matching:
Using the parallel map matching technique [30], GPS points

are mapped to the road network. By arranging each taxi’s GPS
records in time order, the spatiotemporal trajectories of each
taxi are constructed.

2) Trip extraction:
Both the occupied trips and unoccupied trips of each taxi

are extracted from the trajectories based on the occupied status
(whether the taxi is carrying passengers or vacant) [6]. Using
the occupied trips, the locations and times of the pick-up and
drop-off activities are then extracted.

Fig. 3 shows the temporal variation and spatial distribution
of passenger pick-up in Shenzhen. This figure illustrates that
roadside taxi demands change with time and vary in space.
Therefore, considering the long charging times of ETs, the
actions of cruising on the road and recharging at stations
should be suitably coordinated.

Fig. 3. (a) Temporal variation and (b) spatial distribution of passenger pick-
up.

Fig. 4. The cumulative probability distribution of the travel distance in typical
area of Shenzhen. (a) 8-9 AM. (b) 5-6 PM.

3) Statistical learning:
Two probabilities of travel demand can be learned from

taxi trajectories. Both the taxi demand and traffic vary from
minute to minute. Hence, we divided the entire day into even
30 minute time slots and calculated these probabilities.

i. The probability of successfully picking up a passenger on
road rij at time t:

Pt(rij) =
Occ(rij)

Cru(rij) +Occ(rij)
(6)

where time t is within time slot T and Occ(rij) and Cru(rij)
are the numbers of occupied trips and cruising (unoccupied)
trips, respectively, on road rij within time slot T .

ii. The probability of successfully picking up a passenger
with destination k on road rij :

Pt(k|rij) =
Occ(rij , k)

Occ(rij)
(7)

where Occ(rij , k) is the number of occupied trips with the
origin at rij within T and the destination at k.

The knowledge learned from gasoline taxi trajectories is
then transferred to the ET domain. Meanwhile, the ETs are
constrained by the battery and the available charging stations.
Considering the constraint of the reachable passenger desti-
nations, if an ET in state s = (i, e, t) takes a cruising action
a = (i→ j, θ = 0),

i. The probability of successfully picking up a passenger is

P s
t (a) = P s

t (rij) = Pt(rij)
∑

k∈I:L(s,j,k)>0

Pt(k|rij) (8)

where the probabilities of picking up passengers with un-
reachable destinations are excluded.

ii. The probability of successfully picking up a passenger
with a reachable destination k is

P s
t (a, k) = P s

t (rij , k) = P s
t (rij)P (k|rij) (9)

Fig. 4 shows the cumulative probability of picking up
passengers with different travel distance. This figure shows
that the ability of ETs to pick up passengers not only varies
in time and space but also is affected by the remaining battery
capacity.

B. Action-based Tree (ABT)

We construct an ABT to model the consecutive actions and
potential net revenue of an ET driver in n steps, including
his/her cruising and recharging actions and corresponding
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Fig. 5. Illustration of building an action-based tree. (a) Building the tree
topology. (b) Estimating the weight of an edge.

ENRs. A node of an ABT is a possible state of the ET in
the next n steps. A downward edge is a feasible action that
incurs the transition to the next state. Each edge in the ABT
is labeled with a weight equal to the maximum ENR of the
corresponding action with the state. A path from the root to a
leaf contains sequential edges, indicating consecutive feasible
actions. For example, the red path shown in Fig. 5a denotes
two consecutive feasible actions (a2

1 → a4
2). By choosing a

path with the maximum weight among all the following paths,
the best action sequence ~A∗n can be obtained.

1) Building ABT:
Given an ET driver in state s0 and a fixed number of future

actions n ≥ 1, the process of building and using an ABT to
find the best action sequence is described as follows:

i. Building the tree topology:
According to the road network, locations of charging sta-

tions, and remaining battery capacity, all consecutive feasible
actions of the ET driver are deduced to build the topology of
the tree. Generally, an action a taken in state s can produce
an edge to a child node representing the next state. When all
consecutive actions in n steps are explored, the topology of
an ABT is produced. Fig. 5a shows an example of building a
tree’s topology for the ET driver shown in Fig. 1a. Note that
all infeasible actions are removed by constraint (4).

ii. Estimating the edge weights:
The weight of each edge is the maximum ENR of the

corresponding state-action pair 〈s, a〉 >, where s is the parent
node and a is the action. As (3) suggests, calculating the
ENR of a state-action pair relies on the computation of the
ENRs of the succeeding states and actions. Hence, a leaf-to-
root approach is used to estimate the weights. The weights of
the edge linking to the leaf nodes are first computed using
the normal ENR as (2). Regarding the edge linking to a
nonleaf node, its weight is the sum of the maximum ENRs
of passenger delivery of the current action and the maximum
of succeeding state-action pairs in the next node.

For example, the blue arrows in Fig. 5b show the order
of calculating the weights of three edges, where the weight
R2(s0, a

3
1) of edge 〈s0, a

3
1〉 is the sum of the ENR of passenger

delivery and the maximum value between R1(s3
1, a

5
2) and

R1(s3
1, a

6
2). Consequently, we implement max operators at

nodes and sum at edges to calculate the maximum ENR, i.e.,
the weight.

By recursively calculating the ENR from the leaf node to
the root, the maximum ENRs of all state-action pairs 〈s, a〉
are estimated. Figuratively speaking, each edge of the tree is
labeled with a weight.

iii. Action selection:
Given the current state of an ET, the corresponding ABT

can be built. From the root node, by sequentially selecting the
next edge with maximum weight in the current reached node
until reaching a leaf node, optimal sequential actions ~A∗n are
obtained.

2) Recharging strategy:
Compared to refueling, ET recharging generally takes a

long time and therefore significantly affects drivers’ profit.
Reasonable recharging decisions will increase the efficiency
of finding and delivering passengers, thereby improving the
net revenue of ET drivers over the next several hours rather
than focusing on immediate rewards. However, it is difficult
to measure the potential profit of a recharging action with the
ENR because the ENR converges when many steps are con-
sidered [31]. Consequently, the edge weight of the recharging
action is not comparable with the weights of the cruising edge.
We proposed a simple strategy, named recharging strategy, to
align the long-term profit of recharging actions with ABT. In
this strategy, after all the weights of an ABT are estimated,
the weights of the edges that represent recharging actions are
adjusted.

Assume that the expected accumulated net revenue (EANR)
of an ET driver in state s in the next ∆T > 0 hours is R∆T (s).
If the driver takes a recharging action ar ∈ Ar in the current
state s, we assume that the EANR changes into R∆T (s, ar).
Using the learned taxi knowledge, the Monte Carlo method is
used to estimate the EANR.

Clearly, in the following ∆T hours, if the recharging action
tends to gain more EANR, as (10) shows, the ET driver should
go to recharge.

max
ar∈Ar

{R∆T (s, ar)} > R∆T (s) (10)

For a downward edge (s, ar) representing a recharging
action ar, we denote its weight as R∆T (s, ar). Similarly,
R∆T (s) of each node is recorded to calculate whether (10)
holds. Fig. 6 shows a node with four child edges, where the
weights of the two edges on the left are replaced with the
corresponding EANR. An additional EANR of the node is
also recorded.

After an ABT is built and the corresponding EANRs are
estimated, in the selection stage, if an edge that represents
a recharging action has the maximum EANR among all child
edges, in other words, (10) holds, it will be selected; otherwise,
we select a cruising edge with the maximum ENR. Eventually,
considering the long-term profit of the recharging, optimal
sequential actions are obtained from the root to a leaf.

Considering the spatial distribution of charging stations, two
typical charging station candidate sets are shown as follows:
• NCS: Only the nearest charging station to the current ET

location is considered. The NCS minimizes the detour
distance to reach a charging station.
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Fig. 6. Adjusting the weights of some child edges of a node.

• ACS: All charging stations are considered. This option
may increase the detour cost but offers the opportunity
to find the best recharging action.

3) Speed-up strategy:
Suppose that the number of feasible actions in a particular

state is ≤ N and that the number of reachable passenger
destinations is ≤ M = |I|. Given the state s of an ET
and the fixed length n ≥ 1, estimating all the weights of
the corresponding ABT has a computational complexity of
O((N +NM)n), as Proof 1 shows.

Proof 1: Assume that the number of all possible actions in
1 ≤ m ≤ n steps is f(m). If n = 1, f(1) is ≤ N . Clearly, the
number of possible states after m steps is ≤ f(m)(M + 1);
thus, the number of possible actions in m+ 1 steps f(m+ 1)
is ≤ f(m)(M + 1)N ≤ f(1)(M + 1)mNm. Therefore, the
total number of actions within n steps is ≤ N 1−Nn(M+1)n

1−N(M+1) .
Because the ENR of each state-action pair is calculated recur-
sively only once, the computational complexity of estimating
the weights is O((N +NM)n).

Intuitively, the full computation process would require ex-
cessive computational resources; therefore, it would be dif-
ficult to support real-time route recommendation in this way.
Here, we instead employ a lookup table to store the maximum
ENRs of possible state-action pairs, that is, the weights of the
edges in the ABTs, to increase the computing efficiency.

Note that a state-action pair 〈s, a〉 consists of five elements,
〈i, e, t, j, θ〉. As the origin and destination of a trip and the
recharging duration are fixed by i → j and θ, the maximum
ENR of the state-action pair depends only on the remaining
battery capacity e and the current time t.

Hence, to reduce the size of the lookup table, a sparse state
space is used by dividing the remaining battery capacity and
the time into larger intervals, e.g., 1 kWh and 5 minutes,
respectively. The maximum ENR in one step, (2), can be
rapidly calculated using the knowledge learned from taxi GPS
trajectories. Furthermore, according to (3), the calculation of
the maximum ENR over m > 1 steps is based on the estimated
maximum ENR after m−1 steps. Thus, the calculation of the
maximum ENR is conducted step by step from 1 to n.

By querying the lookup table, the computational complexity
of obtaining the weights in an ABT decreases to O(Nn), as
shown in Proof 2.

Proof 2: For an ABT with a height of n, the total number of
its edges is ≤ N 1−Nn

1−N . Because each weight is obtained from
the lookup table only once, the computational complexity is
O(Nn).

C. Online Recommendation Process

The online module processes real-time requests from ET
drivers and calculates and recommends optimal cruising or
recharging actions. After dropping off passengers or leaving a
charging station, the on-board device in an ET will automat-
ically send the current location i and the remaining battery
capacity e to the recommendation server. Then, the server will
build an ABT in a real-time manner. The edge weights of the
ABT are associated with querying the lookup table and are
adjusted when the recharging strategy is performed. Next, the
best sequential actions will be found by using the ABT. The
server matches the optimal sequential actions with the real-
world road network to generate a practical route for the driver,
which is then sent back to the on-board device in the ET. As
shown in Fig. 7, the recommendation system provides the ET
driver with a practical driving route, which is shown on the
screen and the on-board device. Eventually, the ET driver can
follow the recommended route to hunt for clients and schedule
recharging.

Fig. 7. The user interface illustration of the proposed system.

IV. EXPERIMENT AND RESULTS

A. Experimental Setup

An experimental ET route recommendation system was
developed for ETs in Shenzhen, China. Three real-world
datasets were used:
• Road network: The road network of Shenzhen contains

6,224 road segments and 5,724 junctions.
• Taxi trajectories: The GPS trajectories of 16,416 gaso-

line taxies were collected in June 2016. The collected data
include the location, time, driving speed, and occupied
status.

• Charging stations: This dataset includes 78 fast charging
stations for ETs.

A simulation was conducted to evaluate the net revenue of
ETs adopting this system. The simulated ETs were randomly
distributed in the city and followed the recommended actions.
Because the most popular ET model in Shenzhen is BYD
E6, the following settings were adopted for the ETs: battery
capacity = 60 kWh and driving range = 294 km. The battery
energy consumption was modeled by a function that is linear
in the driving distance [6]. The charging rate α was set to
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TABLE I
STATISTICS FOR ETS AND GASOLINE TAXIES

ET Gasoline taxi

Working time (h) 18.02 17.40
Recharging time (h) 2.69 -

Total travel distance (km) 427.40 402.59
Total fare distance (km) 311.06 240.41

30 kW. The electricity price β was set to 0.8 CNY/kWh
in accordance with the current cost of electricity. There are
several parameters to be set in the proposed framework:
• Number of sequential actions n. We first set it to 5 and

evaluated the trade-off with the ENR.
• Recharging duration ∆T . We set it to 2 hours.
• Recharging stations. We set all charging stations as

candidates. In other words, the ACS strategy was adopted.
The extracted trips were used to simulate real-world taxi

travel. The performance of the presented framework, including
the average daily net revenue, recharging rhythm and effi-
ciency, was evaluated. Three baseline methods were imple-
mented for comparison:
• Random: one feasible route is randomly selected and

recommended to each ET.
• TaxiExp: the optimal taxi travel routes based on the travel

experience of gasoline taxi drivers are recommended.
• MaxProb: routes that maximize the probability of pick-

ing up passengers are recommended [23].

B. Results for the Net Revenue of the ETs

Tab. I reports the statistics of the trips of ETs adopting the
recommendation. It suggests that the ETs will travel an average
of 427.40 km in 18.02 hours per day, with a fare distance of
311.06 km (72.8%) for delivering passengers. Meanwhile, it
will cost 2.69 hours to recharge. By comparison, the gasoline
taxies travel an average of 402.59 km in a day, only 240.41 km
(59.7%) of which is with passengers. Therefore, the proposed
recommendation approach significantly improves the net rev-
enue of the ETs with fewer cruising trips, thus promoting the
viability of ETs.

C. Comparison with Gasoline Taxies

Fig. 8 presents the comparison with gasoline taxies. The
results indicate that the daily net revenue of ET drivers mainly
varies between approximately 550 and 950 CNY, with an
average of 754 CNY. The daily net revenue of the ETs is
greater than that of most of the gasoline taxies. The average
daily net revenue of the ETs outperforms that of 76.2% of the
gasoline taxi drivers. However, the best gasoline driver can
earn more than 900 CNY, more than the net revenue of the
best ET driver. This is due to the long charging time of ETs,
which limits the full potential profit of ET drivers.

D. Comparison with Baseline Methods

Fig. 9 presents the comparison with the baseline methods.
The results demonstrate that the proposed system outperforms
all baseline methods. The naive Random method results in the

lowest daily net revenue for ET drivers, with a mean value
of 466 CNY. The TaxiExp method shows only slightly better
performance, with an average daily net revenue of 471 CNY.
The MaxProb method offers the second-largest average daily
net revenue for ET drivers, namely, 665 CNY.

E. The Coordination of ET Actions

Fig. 10 displays the recharging rhythm of the ETs. Few
ETs recharge during the morning (7:00-9:00 AM) and evening
(5:00-7:00 PM) peak hours. A large proportion of ETs
recharge from 4:00-5:00 PM. It is reasonable for the ET drivers
to recharge and reserve more battery capacity for the evening
peak. Most EVs are recommended to recharge at night (10:00
PM to 4:00 AM), which is asynchronous with the rhythm of
the taxi demand.

The red line in Fig. 10 further displays the net revenue of
ETs in each hour. Three peaks of the net revenue appear at the
periods 5:00-7:00 AM, 10:00-12:00 AM, and 5:00-6:00 PM.
Because of the relatively long-term vision of the recharging
strategy, more ETs are recommended to recharge before the
taxi demand peak in order to produce more net revenue.

F. Effect of the Recharging Strategy and the ET Setting

Both the available charging stations and the ET setting will
impact the performance of ET drivers. Fig. 11a compares the
results of the ACS and NCS strategies. By choosing the best
charging stations and recharging duration among all options,
the proposed system can achieve higher daily net revenue for
ET drivers by improving from 692 CNY (NCS) to 754 CNY
(ACS). This is because more charging stations will increase the
long-term trade-off between recharging and possible passenger
delivery.

We evaluated the effect of the battery capacity on the
recommendation. Fig. 11b illustrates the results obtained with
different ET battery capacities. By increasing the driving range
from approximately 200 km to 300 km, the average daily
net revenue will be increased from 690 CNY to 754 CNY.
However, for the same increase of 20 kWh (or approximately
100 km in driving range), a capacity increase from 60 kWh
to 80 kWh produces an improvement in the average daily net
revenue of only 3 CNY.

We also varied the charging rate to evaluate its impact on
the ET performance. Fig. 11c displays the results. When faster
charging points with a charging speed of 60 kW are adopted,
the daily net revenue will be improved from 754 to 784 CNY.
On the other hand, a lower charging rate (30 kW) will decrease
the average daily net revenue by 116 CNY because more time
must be spent recharging.

G. Sensitivity Analysis

1) The number of recommended actions:
The number of consecutive actions n represents the long-

term vision of the route recommendation. Fig. 12a shows
the average daily revenue of ETs with different n. This
figure suggests that ET drivers will earn 625 CNY per day
on average, with only one action considered. By increasing
n from 1 to 5, the average net revenue per day increases
to 747 CNY. However, as the more consecutive actions are
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Fig. 8. Comparison with gasoline taxies: (a) Daily net revenue of ETs. (b) Comparison of daily net revenue. (c) Comparison of the cumulative distribution
probability of the daily net revenue.

Fig. 9. Comparison with baseline methods.

Fig. 10. Coordination of travel and recharging.

considered, the increasing trend slowed, where the increasing
rate of the average daily net revenue decreased from 13.1% to
less than 0.1% as n grows from 2 to 8.

2) The duration of the recharging strategy:
The EANR was estimated to reflect the potential revenue

of recharging actions in the following ∆T hours, reported in
Fig. 12b. If ∆T is too small, the estimated EANR cannot
uncover the potential net income of recharging actions in a
longer period. Fig. 12b shows that a short duration, such as
∆T = 1h, will produce a small daily net revenue, on average
725 CNY per day. Intuitively, a larger ∆T could generate a
more precise estimation of the ENR. However, if ∆T is too
large, more potential influence of other actions will be fused
with the estimated EANR, thus affecting the coordination of
recharging. It can be measured from Fig. 12b that a long
duration, ∆T ≥ 3h, will generate less daily net revenue, less
than 703 CNY per day. Hence, ∆T may have an optimal value
at approximately 2 hours in this study.

3) Number of ETs served by the system:

Recommending the same route to many ET drivers may lead
to the over-provision of taxies on certain roads. To balance
taxi service and taxi demand, we adopted the road capacity
strategy proposed by [12] to constrain the ETs on each road.
If the number of ETs on a road exceeds a certain threshold,
the system will not recommend that any ET enter this road.
Under this strategy, we evaluated the effect of the ET account.
Fig. 12c shows the effect on daily net revenue with different
numbers of ETs. This figure demonstrates that more ETs
relying on the recommendation system will reduce the net
revenue. For example, with 4,000 ETs in the recommendation
system, the average daily net revenue of ETs decreases from
754 CNY to 641 CNY. However, even in the extreme case
(8,000 ETs), the average result for ETs that adopt our system
still outperforms 50% of real-world gasoline taxi drivers.

V. CONCLUSION

Leveraging massive-scale taxi GPS trajectory data, this
study presents a comprehensive real-time route recommen-
dation system for ET drivers that integrates the cruising on
the road and the recharging at stations decision. Taxi travel
knowledge is learned from raw GPS trajectories of gasoline
taxies and used to estimate the ENRs of sequential actions of
ET drivers. An ABT is built and used to recommend the route
choice of ET drivers with an effective speeding-up strategy. An
online prototype system has been developed for high-efficiency
real-time route recommendation. An experiment in Shenzhen
demonstrates the effectiveness and efficiency of the developed
system. The results show that the average daily net revenue
of ET drivers using the developed system outperforms 76.2%
of gasoline taxi drivers. The presented approach can not only
increase the revenue of ET drivers in the short term, but also
improve ETs viability in the long term. The proposed method
is applicable to plug-in hybrid EVs and hydrogen EVs. In the
future work, taxi ranks and real-time traffic information may
be considered. The correlation between waiting time and net
revenue will be explored in real applications.
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