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A B S T R A C T

Distance decay is a primary characteristic of spatial interaction in human movements, and it has been in-
corporated into many spatial interaction models. Existing approaches mainly rely on travel survey datasets to fit
the frictional coefficient of distance decay. However, limited sample size and spatiotemporal resolution make the
determination of the spatial interaction characteristic from a comprehensive view difficult. Recently, this si-
tuation has been reversed due to emerging large human trajectory datasets, which have stimulated a body of
literatures to re-examine the traditional issue of distance decay. However, these studies only focused on distance
decay from a global perspective and neglected the spatial non-stationarity of spatial interaction. This study aims
to reveal the spatial heterogeneity of distance decay of human movements extracted from massive mobile phone
location data from Shenzhen, China. The power law function is utilized to fit the distance decay coefficients for
inflow and outflow of each spatial analysis unit. Then, geographically weighted regression is employed to
quantify the relationship between distance decay coefficients and land use distribution and between distance
decay coefficients and traffic facilities. Results show that considerable spatial non-stationarity appears in the
distance decay of spatial interaction, and the regression coefficients indicate the spatial variations of the in-
fluence of land use and traffic facilities on distance decay across urban space. These findings provide an in-depth
insight into the distance decay characteristics of human movements in a more microcosmic space.

1. Introduction

Spatial interaction in geography is a classical concept that refers to
the dynamic flows of elements (e.g., products, people, information, etc.)
from one location to another (Ullman, 1980; Fotheringham and O'Kelly,
1989). The phenomenon is primarily caused by heterogeneous geo-
graphic space and the uneven distribution of elements. Elements have
to be transferred among different places to balance the spatial supply
and demand, and this transfer results in spatial interaction. Inspired by
the gravity model, geographers have developed many variant models to
determine the volume of spatial interaction between two separate
places (Huff, 1963; Roy and Thill, 2004; Sen and Smith, 2012). Among
these various forms, distance decay is a critical controlling factor to
describe the effect of distance on spatial interaction. The role of dis-
tance can be expressed by the well-known first law of geography that
states, “everything is related to everything else, but near things are

more related than distant things” (Tobler, 1970). Therefore, distance
decay indicates that the intensity of spatial interaction decreases with
the increase in distance between places.

Human flow in cities is representative of spatial interaction because
citizens must move among different places to meet the demands of
everyday activities (e.g., work, shopping, and entertainment). An im-
portant task in constructing a spatial interaction model of human flow
is to determine the distance decay function and distance friction coef-
ficient. For the former, geographical researchers have developed dif-
ferent forms of functions to examine the law of distance decay, but
power and exponential laws remain the two popular functions to model
the distance decay of spatial interaction (de Vries et al., 2009; Martínez
and Viegas, 2013; Halás et al., 2014; Chen, 2015). This study primarily
concentrates on examining the distance decay coefficient of human
spatial interaction, which plays a crucial role in improving model
prediction accuracy. The decay coefficient of spatial interaction could
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be affected by the urban spatial structure (e.g., land use distribution
and compactness) and flow types (e.g., commuting and shopping flows)
(Fotheringham, 1981; de Vries et al., 2009; Kang et al., 2012).

A universal approach for examining the decay coefficient is to fit the
distance decay function by using a sampled human flow dataset. For
example, the traditional approach takes advantage of travel survey data
to understand the decay characteristic of residential commuting flow,
household mobility, and customer behavior in supermarkets (de Vries
et al., 2009; Li and Liu, 2012; Hipp and Boessen, 2017). This individual
trip dataset is often acquired through the expensive and time-con-
suming method of questionnaire surveys or interviews, which leads to a
limited sample size. Moreover, revealing human travel behavior from a
comprehensive view is difficult because of the limited temporal and
spatial resolution (Yuan and Raubal, 2012; Wang et al., 2016; Siła-
Nowicka and Fotheringham, 2018). However, the rapid development of
information and communication technology (ICT) has brought us into
the era of big data, and widespread location-aware devices can now
collect a large number of human spatiotemporal trajectory datasets,
such as taxi trajectories and mobile phone, social media, and smart card
data (Liu et al., 2015a, 2015b). These large geo-spatial datasets en-
courages researchers to investigate urban human mobility at an un-
precedented space–time scale, including but not limited to under-
standing urban spatiotemporal dynamics (Shaw et al., 2016; Sui and
Shaw, 2018), detecting urban spatial structures (Liu et al., 2015a;
Louail et al., 2015), exploring human commuting patterns (Ma et al.,
2017; Yang et al., 2018a), and quantifying human activity space (Xu
et al., 2016).

Recently, studies have been conducted on the traditional issue of
distance decay in human movements by utilizing emerging human
sensing datasets. The main contents can be traced from two threads.
The first thread reviews the decay law of human mobility and con-
structs corresponding prediction models (González et al., 2008; Song
et al., 2010; Liu et al., 2012). The second thread re-examines the decay
coefficient of human spatial interaction and calibrates the typical spa-
tial interaction model by using new trajectory datasets (Kang et al.,
2012; Yue et al., 2012; Gao et al., 2013; Wang et al., 2016; Han et al.,
2018; Siła-Nowicka and Fotheringham, 2018). Most of these extant
studies provided an understanding of the distance decay of spatial in-
teraction only from a global perspective, and the decay coefficient was
regarded as homogeneous for an entire city. Only a few studies have
considered spatial non-stationarity when fitting the distance decay
parameters (Fotheringham Stewart et al., 1996; Suárez-Vega et al.,
2015), but both of the two studies used the limited survey datasets and
either focused on visual analysis or locating a new store using Huff
model, which is different from our consideration. In addition, Kordi and
Fotheringham (2016) proposed a spatially weighted interaction models
for detecting, visualizing and analyzing spatial non-stationarity in
spatial interaction processes, but they primarily focused on modelling
the flows between two places using spatially weighted techniques ra-
ther than examining the spatial variations of distance decay coeffi-
cients. Kong et al. (2017) utilized taxi data to investigate the public
facility characteristic from a spatial interaction perspective, but they
only analyzed the distance decay of visiting urban hospitals and limited
in examining the influence factors of distance decay. This study intends
to enrich existing literature by investigating the spatial variations of
distance decay in spatial interaction and quantifying the spatial varying
influence of land use characteristics and traffic facilities on the intensity
of distance decay. The heterogeneous geographic space makes it im-
possible for the whole space to have the same decay velocity in spatial
interaction, especially in an urban space with an uneven distribution of
population, land use, and infrastructure. This absence of literature may
be attributed to the low coverage rate and spatial resolution of tradi-
tional individual survey data. At present, large human-tracking datasets
provide a new opportunity for acquiring an in-depth understanding of
human spatial interaction at a highly detailed spatial scale.

This study aims to address this gap by revealing the spatial

variations of distance decay in urban space through the use of massive
mobile phone location data from Shenzhen, China. First, the human
movement trips is extracted from the individual space–time trajectory
constructed from mobile phone location records. Second, we distin-
guish the incoming and outgoing flows of a location and fit the distance
decay coefficients by using a power law function for its inflow and
outflow, respectively. The decay parameters are discussed from statis-
tical and spatial perspectives. Finally, ordinary least-squares (OLS) re-
gression and geographically weighted regression (GWR) are performed
to explore the relationship among distance decay coefficients, land use
distribution, and traffic facilities. The results indicate that considerable
spatial variations exists in the influence of land use and traffic factors
on the intensity distance decay. These findings provide us an improved
understanding of the distance decay of human movements at a micro-
cosmic scale.

The remainder of this paper is arranged as follows. Section 2 in-
troduces the study area and mobile phone data used in this work.
Section 3 provides a description of the study's methodology ranging
from the extraction of the origin–destination trips matrix and estima-
tion of distance decay coefficients to the description of the GWR model.
Section 4 shows the regression results of OLS and GWR and discusses
the spatial varying relationship between distance decay and the ex-
planatory variables related to land use and traffic. The last section
presents the conclusions of this study and discusses further work di-
rections.

2. Study area and dataset

2.1. Study area

The case study area, namely, Shenzhen, is located in the southeast of
China and adjacent to Hong Kong. Shenzhen is the first special eco-
nomic zone established after the implementation of the reform and
opening-up policy in China. With the rapid development in the past
40 years, Shenzhen has become a national economic, financial, tech-
nological, and innovative center and one of the largest cities in China.
Shenzhen covers a total area of approximately 2000 km2 with a popu-
lation of approximately 20 million. Fig. 1 shows Shenzhen, which
contains 10 administrative districts. Futian, Luohu, and Nanshan are
well-developed areas (i.e., downtown areas) dominated by numerous
commercial, financial, and high-tech enterprises. Banan, Longhua, and
Longgang are suburbs and dominated by many industrial parks and
factories. Yantian is an international port for marine trade. The other
three districts (Guangming, Pingshan, and Dapeng) are rural areas and
contain several villages and tourist destinations. Note that the islands in
the left bottom are not considered in the following analysis.

2.2. Dataset

Regular sampling mobile phone location data were used in this
study to capture human movement trajectories. Unlike detailed call
record (CDR) data that sample individual locations only when com-
munication activities (e.g., phone call or text messages) occur, this
dataset captures individual locations at regular intervals (approxi-
mately 1 h) and covers a total of digital footprints of approximately 16
million mobile phone users on a typical workday in 2012. Each record
contains four essential attributes, namely, user ID, recording time, and
longitude and latitude of the corresponding cell phone tower that
provides service to the mobile phone. Table 1 shows an example of
individual records during a workday, and the time window represents
the record occurring time slots. Notably, the dataset has been encrypted
for privacy protection before allowing it to be used for research. More
than 5900 distinct cell phone towers were extracted from the dataset,
and voronoi polygons were produced based on the locations of cell
phone towers to denote the service area of towers (Yang et al., 2018a).

The four other spatial datasets used in this study were urban land
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use, road network, bus stations, and subway. Land use data included 53
land use types, which were aggregated into six categories based on the
planning standards of urban development land. The six categories were
commercial (wholesale, retail, financial land, etc.), industrial (in-
dustrial parks, factories, warehouses, etc.), residential, public (hospi-
tals, education, open green parks, etc.), transport (airport, railway
stations, ports, etc.), and other lands (agricultural, military, special,
etc.). The six kinds of land use were employed to quantify the effect of
land use distribution on the distance decay of human movements. Road
networks, bus stations, and subways were used to measure the effect of
public traffic facilities on distance decay.

3. Method

First, we extracted the human movement trips matrix from the
mobile phone data. Second, the process for estimating the coefficients
of distance decay was introduced for each traffic analysis zone (TAZ).
Finally, we described the GWR model and explanatory variables to be
inputted into this model.

3.1. Extracting human movement trips from mobile phone dataset

For each mobile phone user, we can establish a 3D space–time
trajectory by linking all location records in a chronological order
(Fig. 2). According to the theory of time–geography (Hägerstraand,
1970), the horizontal plane represents the spatial longitude and latitude
of cell phone towers, and the vertical plane represents the updated time
of records. The space–time trajectory can be expressed as follows:

= =T p p p p p x y t id[ , , , , , ], ( , , , )i n i i i i i1 2 (1)

where pi represents the ith record point; xi, yi, and ti represent the
longitude, latitude, and time of the point, respectively; and idi denotes
the ID of the cell phone tower. In order to extract human movement
trips, it is necessary to identify the stop locations from the space-time
trajectory. We scanned the space–time trajectory points successively
from the first point to the end point. When the tower ID of the two
adjacent tracking points are identical (idi = idi+1) and the duration
time is greater than 0.5 h (regular sampling interval of the dataset is
approximately 1 h), a stop can be identified at cell phone tower idi (blue
line in Fig. 2), then the movement between two adjacent stops can be
considered as a trip and the two stops are labelled as the origin and
destination of the trip respectively based on their temporal order (or-
ange line in Fig. 2). In this manner, we can extract all movement trips
for all cell phone users and generate an cell phone tower-based origin-
destination flow matrix, which is denoted as (idi, idj,countij), where
countij represents the number of trips flowing from the tower idi to idj
during the day.

Fig. 1. Study area.

Table 1
An individual's cell phone records in a day.

User ID Record time Time window Longitude Latitude

3y8k6g6⁎⁎⁎⁎⁎⁎ 00:35:38 00:00–01:00 113.⁎⁎⁎ 22.⁎⁎⁎

3y8k6g6⁎⁎⁎⁎⁎⁎ 01:30:45 01:00–02:00 113.⁎⁎⁎ 22.⁎⁎⁎

3y8k6g6⁎⁎⁎⁎⁎⁎ 02:23:20 02:00–03:00 113.⁎⁎⁎ 22.⁎⁎⁎

3y8k6g6⁎⁎⁎⁎⁎⁎ … … …
3y8k6g6⁎⁎⁎⁎⁎⁎ 23:41:58 23:00–24:00 113.⁎⁎⁎ 22.⁎⁎⁎

Fig. 2. Space-time trajectory of a mobile phone user.
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In this study, the traffic analysis zones (TAZs) were utilized to im-
plement the analysis of distance decay. As a basic spatial analysis unit,
TAZ has been widely used by geographers to conduct traffic surveys,
trips generation forecasting, human mobility patterns and community
planning (Fang et al., 2017). Therefore, the extracted tower-based flows
should be aggregated into TAZ-based movement flows. This study al-
located the tower-based flows according to the proportion of over-
lapping areas between voronoi polygons and TAZs. Referring to the
study by Yin et al. (2015), the formula can be described as follow:

=
= =
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n

n mn
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1 1 (2)

where Ai
m represents the overlapping area between voronoi polygon m

and TAZ i, Aj
n represents the overlapping area between voronoi polygon

n and TAZ j. Am and An represent the area of voronoi polygon m and n
respectively, ODmn

tower represents the tower-based flows from voronoi
polygon m to voronoi polygon n. N is the number of cell phone towers.
For each TAZ, human flows can be separated into inflow and outflow.
Inflow represents the number of people moving from other TAZs to this
TAZ, and outflow represents the number of people leaving the TAZ to
other TAZs. This study would investigate the distance decay of inflow
and outflow for each TAZ respectively.

3.2. Estimating the coefficients of distance decay of human movement trips

The number of flowing people decreases with the increase in dis-
tance between two places. Previous studies have tried to model the
distance decay of human movements using human travel data, and the
main debate that remains is between power and exponential laws (de
Vries et al., 2009; Chen, 2015). In fact, the effectiveness of models
depends on the dataset used in the research. Kang et al. (2013) com-
pared the human movements of Singapore by using mobile phone and
taxicab data and found that mobile phone movements are inclined to
follow a power-law function, whereas taxicab trips follow an ex-
ponential distribution (Kang et al., 2013). Therefore, this study em-
ployed the power-law function to model the distance decay of human
movement trips for each TAZ. The power-law function can be re-
presented as

=P d d( ) (3)

=ln P ln d( ) ( ) (4)

where P represents the cumulative distribution of trips moving at dis-
tance d between two places. β is the coefficient of distance decay that
indicates the influence of distance on human interaction between two
places; a large value indicates that distance has a considerable effect on
human flows (Gao et al., 2013; Liu et al., 2014). To calculate parameter
β, a logarithm function was applied to both sides of Eq. (3) to transform
it into a linear mode. The slope of the line reflects how fast the distance
decays. The OLS method was used to fit the regression coefficient of the
linear model. The distance decay coefficients of inflow and outflow,
which are denoted as inflow_βiTAZ and outflow_βiTAZ respectively, were
fitted for TAZ i by using the above model. The distance decay coeffi-
cients of TAZs were adopted as dependent variables in the following
GWR analysis.

3.3. Geographically weighted regression analysis

To investigate spatial heterogeneity of the distance decay of spatial
interaction, this study employed the GWR model to quantify the re-
lationship among the coefficients of distance decay, local land use
characteristics, and traffic facilities. This section presents a brief de-
scription of the GWR model and the corresponding explanatory vari-
ables.

Given that a spatial surface is homogeneous, the traditional global
multivariate regression model is often used to explore the relationship

between dependent and independent variables. The formula of this
regression model is

= + +Y Xi 0
k

k ki i
(5)

where Yi represents the dependent variable, αk is the estimated coeffi-
cient of the independent variable Xki, and εi is the residual. The OLS
method is generally applied to estimate the coefficients. The estimated
regression coefficients are identical and constant for the entire study
area due to the globalism of this model. However, the entire area
cannot be completely homogeneous because heterogeneity widely ex-
ists in spatial data and highly depends on the spatial characteristics of
local regions. The GWR model can quantify the spatial effect by em-
bedding geographical coordinates into the global OLS regression model.
The general GWR model is given as follows:

= + +Y u v u v X( , ) ( , )i 0 i i
k

k i i ki i
(6)

where (ui,vi) represents the coordinate of location i and αk(ui,vi) is the
regression coefficient of independent variable Xki at location i.
Weighted least squares is used to estimate the coefficients of the GWR
model, where the weights capture the spatial effect of local observa-
tions on the observation at location i. The popular Gaussian kernel
function is employed to calculate the spatial weighted matrix; it models
the spatial effects of surrounding observations by Gaussian distance
decay within the bandwidth. Notably, bandwidth selection is critical
because it has a great impact on the estimation of coefficients. A cor-
rected Akaike information criterion (AICc) is used to evaluate the fitting
to select the optimum bandwidth (Burnham and Anderson, 2004).
Owing to the incorporation of the spatial weighted matrix for esti-
mating regression coefficients, the GWR model can generate varying
regression coefficients across the study area according to local spatial
characteristics. Therefore, we utilized this method to measure the
spatial variations in the relationships among distance decay of human
movements, land use distribution, and traffic convenience.

The explanatory variables were mainly derived from land use and
transport, which are strongly associated with human mobility. We
calculated the percentage of the six types of land use (commercial, in-
dustrial, residential, public, transport, and others) for each TAZ to in-
dicate the land use distribution characteristics within the TAZ. The
mixture of land use types is an important impact factor on human
travel. Entropy was employed to assess the mixture of land use in each
TAZ, and the specific formula has been provided in a previous study (Tu
et al., 2018; Yang et al., 2018b). With regard to transport convenience,
we utilized road density, bus stop density, and distance from TAZ to the
nearest subway station to evaluate the degree of traffic convenience for
each TAZ. Road density is defined as the length of road links within TAZ
divided by the area of the TAZ. Bus stop density is defined as the
number of bus stops within TAZ divided by the area of the TAZ. The
distance from the center of TAZ to the nearest subway station was
calculated by using Euclidean distance. In addition, the location of TAZ
in the city was regarded as an explanatory variable, which is measured
by the Euclidean distance between the center of TAZ and the urban
center. Moreover, we counted the number of service mobile phone users
for each tower during the day, and aggregated the these users into TAZs
according to the proportion of overlapping area between voronoi
polygons and TAZs, which could be considered as a population-related
explanatory variable, denoted as population. In total, 12 explanatory
variables were considered initially.

For a comparative analysis, traditional OLS and GWR models were
applied to inflow and outflow, respectively. Therefore, four regression
models were implemented to explore the relationship between distance
decay of human movements and the proposed explanatory variables
related to land use and transport. The four models are denoted as
inflow_OLS, inflow_GWR, outflow_OLS, and outflow_GWR. The soft-
ware developed by Nakaya et al. (2009) was used to implement the
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GWR analysis, and all explanatory variables were normalized by using
the z-score to eliminate the influence of magnitude.

4. Results and discussion

4.1. Distance decay characteristic of human movements

4.1.1. Global distance decay characteristic
On the basis of the extracted TAZ-based flows matrix, we first

checked the global distance decay distribution of Shenzhen. Fig. 3a
shows the frequency and cumulative distance distribution of movement
flows (binwidth = 0.5 km). More than 80% of the displacement dis-
tance between the origin and destination was less than 4 km. The fre-
quency distribution followed a long-tail law, which demonstrates that
only few displacements move across a long distance. Fig. 3b shows the
log-log distance distribution of movement flows. A liner model was
utilized to fit this distribution (red line in the Figure), the goodness of
fit R-square was 0.902 and the generated global distance decay para-
meter β was 1.853, which is larger than the findings of Harbin (1.60)
but less than the value for Singapore (2.5) (Gao et al., 2013; Kang et al.,
2013). The difference may be attributed to the discrepancy in spatial
analysis units (voronoi polygons for Harbin, regular grid cells for Sin-
gapore) and urban spatial structure characteristics (e.g., urban mor-
phology, functional zone distribution, compactness, etc.).

4.1.2. Local distance decay characteristics
Before fitting the decay coefficients, we calculated, for each TAZ,

the number of TAZs that interact with it (e.g., ones that have inflow/
outflow interaction with that selected TAZ). Fig. 4 displays the statis-
tical distribution of number of interacting TAZs from both the per-
spective of inflow and outflow. This gives us an idea about the sparsity
of interactions for all the TAZs, from both the perspective of inflow and
outflow. For TAZs with little interactions with others, it would be
problematics in fitting the distance decay function. To mitigate this

issue, we choose to filter TAZs with number of interacting TAZs less
than 20 for inflow, and the same for outflow.

For each TAZ, the inflow and outflow of distribution in displace-
ment decay were fitted to generate decay coefficients inflow_βiTAZ and
outflow_βiTAZ of the TAZ, respectively. Fig. 4 presents the statistical
distribution of decay coefficients and the goodness of fit. For goodness
of fit (Fig. 5b and d), more than 85% of the TAZs had values greater
than 0.8 regardless of inflow or outflow, which indicates that the power
law can capture the distance decay distribution to some extent. The
decay coefficients shown in Fig. 5a and c show a similar Gaussian
normal distribution, and the peak corresponds to decay coefficient
β= 2.0. The percentages of coefficients between 1.5 and 2.5 were
80.3% and 84.3% for inflow and outflow, respectively, and the dis-
tribution of the decay coefficient of inflow was slightly more decen-
tralized than that of outflow (Fig. 5a and c). Therefore, it can be con-
cluded that the intensity of distance decay is not consistent for the
entire city but varies for different places.

From the perspective of spatial distribution, human movements in
the TAZs located in the northern part of Shenzhen decayed faster than
that in the southern part, especially in the northwest part (Fig. 6). As
aforementioned, the three suburbs of Baoan, Longhua, and Longgang
are characterized by a large number industrial parks and factories, and
many workers are likely to live in places near their workplaces or in
dormitories provided by factories to save commuting time and cost (Xu
et al., 2015). As a result, people living in the northern parts tend to have
a smaller activity space than those living in the southern parts, which
may be an explanation for the faster distance decay in the northern
parts. In addition, it can be seen that the spatial distribution of decay
coefficients based on inflows and outflows are unsymmetrical. We
conjecture that one major reason for this may be caused by human trips
chain of the day. For example, it is possible that one takes a trip from
home to workplace in the morning, he may travel to another place to
take activities such as dinner or recreation after finishing one day's
work, then he returns to home from this place. In this case, he doesn't

Fig. 3. Displacement distance distribution of flows.

Fig. 4. The statistical distribution of number of interacting TAZs from both the perspective of inflow and outflow. (binwidth = 10).
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directly return to home from workplace, which may lead to the un-
symmetrical spatial distribution of decay coefficients for inflow and
outflow. We utilized the global Moran's I index to test the spatial au-
tocorrelation of distance decay coefficients (Table 2). The results
showed that remarkable spatial clustered patterns existed in inflow and
outflow. Therefore, the GWR model is more appropriate than the global
OLS model for regression analysis.

4.2. Impact factors of distance decay

4.2.1. Regression analysis of the OLS model
We employed the global OLS model to examine the effect of land use

and traffic facilities on the distance decay of spatial interaction. It is
infeasible to use all of these six categories of land use for regression
analysis because the sum of these land use is one, thus we excluded the
last category (i.e., other lands) of land use type to avoid multi-
collinearity, and this category includes some land use (agricultural,
military, special lands), which might be less related with human ac-
tivities. After that, we executed a multicollinearity test (Tu et al., 2018;
Qian and Ukkusuri, 2015), and the other 11 independent variables re-
mained for the subsequent regression analysis. Table 3 displays the
regression results of Inflow_OLS and Outflow_OLS models. According to
the adjusted R2, these selected land use- and traffic-related independent
variables only explained 4.6% and 5.9% of the variation in the distance
decay parameter of inflow and outflow, respectively.

At a global level, the land use-related independent variables had a

remarkable impact on distance decay, whereas only subway (D1) of the
three traffic-related variables had a significant association with distance
decay of inflow. Regardless of inflow and outflow, an increase in the
percentage of the industrial or residential land of a TAZ would improve
the intensity of distance decay in spatial interaction, while an increase
in transport land would decrease the intensity of distance decay. The
incremental transport land may enhance the residential travel distance
and make the distance decay slow. A TAZs with larger population may
be more active, which is likely to attract or disperse people at a large
scale, thus the distance decay of spatial interaction may be slower. A
main difference between inflow and outflow was observed in com-
mercial, public land and D2, which generated a remarkable positive
impact on the distance decay coefficient of outflow but not on that of
inflow, indicating that the three variables would make people tend to
take their activities in local area. Moreover, when the location of a TAZ
was closer to the nearest subway station, distance decay of inflow was
slower, which indicates that the subway stations would improve the
range of attraction of the TAZ. However, we do not anticipate that a
place with high mixed land use would provide many chances for people
doing different activities (e.g., work, shopping, recreation, etc.), and
they do not need to travel long distances to meet their life demands.
Therefore, the distance decay of outflow should be faster than that with
less land use mix. A possible explanation for this counterintuitive
phenomenon is that TAZs with high land use mix are concentrated
around the urban center, which may generate a global attraction or
radiation for the entire city.

Although the OLS regression was able to provide a global under-
standing of the relationship between distance decay and land use
characteristics and traffic facilities, some counterintuitive conclusions
still prevail. For example, the results indicated that traffic facilities were
little related with distance decay, and the explanation capability of the
model was very weak. This result may have been caused by overlooking
the spatial non-stationary of these explanatory variables. The Koenker
(BP) statistic was used to determine if a consistent relationship exists
between independent and dependent variables in geographic and data
spaces. The statistically significant result indicated that each ex-
planatory variable exhibited significant non-stationarity, demonstrating
that the GWR model was more suitable for regression analysis than the
OLS model (Lee and Schuett, 2014; Liang et al., 2018). After employing
the toolbox of Arcgis 10.2, the BP statistics of inflow and outflow were
determined to be 55.493 and 44.175, respectively, with an identical p-
value of 0.000. Therefore, we further explored their relationship via
GWR analysis.

4.2.2. Results of GWR model
The estimated results of Inflow_GWR and Outflow_GWR are shown

in Tables 4 and 5, respectively, which list the descriptive statistics of the
varying regression coefficients, namely, minimum, lower quartile,

Fig. 5. Distribution of decay coefficients (β) and goodness of fit (R2) values.

Fig. 6. Spatial distribution of decay coefficients for TAZs.
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median, upper quartile, maximum, and standard deviation (Std). In
comparison with the global OLS model, the remarkably improved ad-
justed R2 from 4.6% and 5.9% of the OLS model to 20.6% and 23.1% of
the GWR model for inflow and outflow respectively, which illustrates
that the GWR model performed better in fitting the distance decay
coefficient and selected explanatory variables. The descriptive statis-
tical indexes provide a general understanding of the distribution char-
acteristics of regression coefficients (Tables 4 and 5). For example, large
standard deviation values indicate that the distribution of coefficients
of D1 and D2 is more dispersed than that of the other variables. For
industrial and residential, more than 75% of TAZs had a positive effect
on distance decay, whereas transport and land use mix in most TAZs
had a negative effect on distance decay. Next, we investigated the
spatial variations effect of these explanatory variables on distance
decay by projecting these coefficients on the TAZs.

Fig. 7 shows the spatial distribution of estimated coefficients of
GWR for inflow and outflow. The red color indicates that the corre-
sponding explanatory variables have a positive influence on distance
decay, and the blue color represents a negative influence. The deeper
the color is, the greater the influence is. The GWR model could quantify
the spatial varying influence of each independent variable on distance
decay. The intensity of distance decay of human inflow and outflow for
each TAZ could reflect the potential range of attraction and radiation of
the place. A small decay coefficient may indicate that the place could
attract or radiate people from or to farther places. Even for the same
independent variable, the spatial distribution of influence presented a
difference between inflow and outflow (Fig. 7). We analyzed the spatial
characteristic of the influence of each explanatory variable for inflow
and outflow.

For land use-related variables, the influence of commercial land
exhibited some differences in spatial distribution between inflow and
outflow. The positive values for inflow were mainly distributed in
Baoan, Nanshan, and northern part of Longgang districts, and the ne-
gative influence was concentrated on Guangming, Pingshan, Yantian
and Luohu districts (Fig. 7 a-1). The first three districts are composed of
many factories and residences. The increased commercial land may
make people avoid traveling long distances for commercial activities
and attracting some nearby residents for shopping, which leads to rapid
distance decay. However, for the rapid developing urban rural area
(Guangming, Yantian and Pingshan districts), an increase in commer-
cial land may promote attracting people at remote villages without
commercial facilities. For Luohu, a developed urban business center
with many shopping malls, the increase in commercial land would
further improve the range of attraction of the places. For outflow, al-
most of all TAZs showed positive regression coefficients when there was
an increase in the percentage of commercial land, and a similar situa-
tion was also observed in the industrial, residential and public land
(Fig. 7 a-2, b-2, c-2 and d-2). That is, an increase in the four types of
land use would motivate people to take activities to a nearby area. For
example, an increase in industrial land in the vicinity of a residential-
dominated area may induce residents to look for a job near their home.
Similarly, an increase in the percentage of industrial and residential
land in most TAZs would improve the intensity of distance decay of
inflow, and only some TAZs located in Dapeng district appeared a ne-
gative effect (Fig. 7 b-1 and c-1). For public land, the positive values of
were mainly distributed around the junctional areas among Baoan,
Nanshan and Longhua districts, while the negative influences mainly
covered the marginal areas of the city (Fig. 7 d-1). A possible ex-
planation is that there are some public attractions in these areas,
especially for Yantian and Dapeng districts with some sea beach spots,
which generate a global attraction. In contrast to the above four types
of land use, the influence of transport land showed a completely dif-
ferent distribution for inflow and outflow. The majority of TAZs

Table 4
Regression results of Inflow_GWR.

Independent variable Minimum Lwr quartile Median Upr quartile Maximum Std

Commercial −0.087 −0.017 0.004 0.023 0.116 0.027
Industrial −0.137 0.056 0.069 0.089 0.160 0.030
Residential −0.488 0.052 0.076 0.099 0.140 0.068
Public −0.112 −0.019 0.001 0.014 0.086 0.028
Transport −0.328 −0.104 −0.056 −0.028 0.034 0.055
Land use mix −0.108 −0.052 −0.027 0.016 0.287 0.052
Road density −0.125 −0.046 −0.020 0.011 0.073 0.036
Bus stop density −0.059 −0.018 −0.001 0.014 0.523 0.068
Distance to the nearest subway station (D1) −0.662 −0.054 0.005 0.068 0.254 0.126
Distance to the urban center (D2) −0.153 −0.101 −0.016 0.171 1.285 0.171
Population −0.244 −0.082 −0.044 −0.012 0.121 0.057
R2 0.267
Adjusted R2 0.206

Table 2
Global Moran's I test for spatial autocorrelation analysis of distance decay
coefficients.

Moran's I index z-Score p-Value

Inflow 0.349 7.943 0.000
Outflow 0.355 7.919 0.000

Table 3
Regression result of the global OLS model.

Dependent variable Model

Inflow_OLS Outflow_OLS

Independent variable Coefficient t-Statistic Coefficient t-Statistic
Commercial 0.002 0.092 0.039 2.167b

Industrial 0.094 4.029c 0.114 5.300c

Residential 0.070 2.566c 0.096 3.788c

Public −0.002 −0.087 0.033 1.893a

Transport −0.042 −2.031b −0.032 −1.691a

Mixed land use −0.006 −0.229 −0.042 −1.745a

Road density 0.006 0.211 0.009 0.379
Bus stop density −0.000 −0.017 0.003 0.165
Distance to the nearest subway

station (D1)
−0.056 −2.161b −0.024 −1.011

Distance to the urban center
(D2)

0.043 1.562 0.044 1.721a

Population −0.060 −3.359c −0.054 −3.272c

R2 0.056 0.069
Adjusted R2 0.046 0.059

a Represents the significance of the regression coefficient at the 0.1 level.
b Represents the significance of the regression coefficient at the 0.05 level.
c Represents the significance of the regression coefficient at the 0.01 level.
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produced a negative effect on distance decay (Fig. 7 e-1 and e-2). An
increase in transport land is likely to enhance the accessibility of these
places and make people travel longer distances. In the southwest corner
of Nanshan districts, increased transport land tends to make people
move in nearby places. As for land use mix, the significant negative
influence was mainly concentrated on Baoan, Nanshan, and Longgang
districts, and the positive influence was distributed in Guangming and
Dapeng districts (Fig. 7 f-1 and f-2). In urban rural areas, increased
mixture of land use may improve the diversity of activities in a local
areas, which accelerates distance decay. However, in developed areas,
the TAZ with more mixed land use may generate a global attraction and
radiation, which results in diminished intensity of distance decay.

With regard to traffic-related variables, the areas with positive in-
fluence of road density for inflow mainly surrounded the northwest part
of the city (Fig. 7 g-1), which includes many industrial parks or fac-
tories, thus an increase in road density may provide a convenient for
nearby residents to come for working. The negative values were
dominated in the western part of the city, the increased road density
may enlarge human activity space, especially in rural areas (Pingshan
and Dapeng districts). However, the outflow showed a different spatial
distribution. An increase in road density would improve the decay in-
tensity in urban developed center areas while prompting people located
in the Baoan, Guangming, Pingshan and Dapeng districts to travel a
long distance for taking activities (Fig. 7 g-2). For bus stops, the large
positive influences were mainly concentrated in the eastern part of city
(Pingshan and Dapeng districts), which covers urban mountains, forests
and farms, and the high bus stops density are mainly concentrated in
some villages where residents usually have a little activity space, thus
having a fast distance decay. The negative values mainly covered the
TAZs of two urban center districts (Futian and Luohu) and their ad-
jacent areas (Longhua, Guangming and western part of Longgang). We
guess that people living these areas tends to seek a job in developed
urban central areas, thus the high-density bus stops may make it con-
venient to travel a long distance, but the specific reasons need to further
investigation. In terms of distance to the nearest subway station, the
high positive values were distributed in the urban downtown areas
(Nanshan and Futian districts), where subway and other infrastructures
are well developed (Fig. 7 i-1 and i-2). Therefore, if an area is far from
subway stations, people are likely to take activities in local areas.
However, in Guangming, Pingshan and Dapeng districts without
subway stations in 2012, the negative influence suggests that the far-
ther an area is from subway stations, the longer the distance is that
people need to take.

In addition, the influence of distance between TAZs and the urban
center presented a similar spatial distribution characteristic for inflow
and outflow. A negative influence appeared around the Futian, Nanshan
Luohu and Longhua districts, and the positive values were located in
Baoan, Guangming, Pingshan and Dapeng districts (Fig. 7 j-1 and j-2).
As aforementioned, the latter four districts have many villages,

industrial parks and factories, and people living in these areas have a
small activity space, which makes the distance decay fast. However, for
urban downtown areas with many commercial, financial, and recrea-
tional venues, a global attraction or radiation covers the whole city. For
population (Fig. 7 k-1 and k-2), there were similar spatial distribution
between inflow and outflow, and more than 75% of TAZs were occu-
pied by negative coefficients. This indicates that the TAZ with larger
population tends to be more active, generating a more wide attraction
or radiation. However, some positive influences appeared in Yantian
and Dapeng districts, these areas are dominated by mountain forests
and are sparsely populated, only some villages are inhabited by a small
number of residents or farmers with a small activity space.

In summary, the influence of these explanatory variables on the
distance decay coefficient showed spatial variation across urban space,
and some distinctive differences were observed among urban down-
town, suburban, and rural areas. This knowledge provides an insight
into the urban distance decay of human movements at a more micro-
scopic scale, which has a referential value for urban traffic management
and planning. For example, it may be helpful for improving the fore-
casting of trip generation by incorporating these varying decay coeffi-
cients into the famous land use and transport model.

5. Conclusion

Recent technological development makes it effortless to collect
large-scale human space–time trajectory datasets, which present new
opportunities to understand or rethink traditional research questions on
human mobility at a comprehensive spatiotemporal scale. A classic
issue is human spatial interaction that describes the human flow among
different places. This work attempts to fill up a gap in the analysis of the
spatial heterogeneity of distance decay of spatial interaction in an
urban space by using a large human sensing dataset. The main con-
tributions of this study are as follows.

First, we extracted the urban spatial interaction matrix from mas-
sive mobile phone data from Shenzhen, China. We utilized a power-law
function to fit the distance decay coefficients of inflow and outflow for a
place. The large values of decay coefficients were mainly concentrated
on the northern part of the city, whereas low values dominated in the
urban southern areas. The global Moran's I test indicated that the
spatial distribution of the decay coefficients of inflow and outflow
showed remarkable spatial cluster patterns.

Second, the traditional OLS and GWR models were used to quantify
the relationship between decay coefficients and several explanatory
variables related to land use and traffic. GWR showed a remarkable
improvement in fitting effectiveness compared with the OLS model.
Furthermore, the varying regression coefficients revealed the spatial
varying of the influence of land use and traffic on the distance decay of
spatial interaction.

However, this study has several limitations that should be

Table 5
Regression results of Outflow_GWR.

Independent variable Minimum Lwr quartile Median Upr quartile Maximum Std

Commercial −0.015 0.033 0.040 0.048 0.083 0.013
Industrial −0.027 0.068 0.085 0.106 0.138 0.025
Residential −0.008 0.075 0.087 0.128 0.219 0.056
Public −0.172 0.021 0.033 0.043 0.065 0.022
Transport −0.243 −0.054 −0.040 −0.027 0.002 0.034
Land use mix −0.093 −0.077 −0.062 −0.034 0.216 0.045
Road density −0.119 −0.056 0.007 0.024 0.037 0.048
Bus stop density −0.026 −0.018 0.002 0.026 0.156 0.028
Distance to the nearest subway station (D1) −0.242 −0.042 0.047 0.138 0.302 0.124
Distance to the urban center (D2) −0.143 −0.078 0.014 0.149 0.273 0.122
Population −0.175 −0.069 −0.033 −0.015 0.055 0.048
R2 0.292
Adjusted R2 0.231
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Fig. 7. Spatial distribution of varying regression coefficients. The left column represents inflow, and the right column represents outflow.
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Fig. 7. (continued)
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considered in future work. First, it considered the spatial variation
when fitting decay coefficients but ignored the time factor of spatial
interaction. It would be interesting to combine temporal variation for
improved understanding of the spatiotemporal characteristics of dis-
tance decay of spatial interaction. Second, although the regression re-
sults show that there are spatial variations existing in distance decay
coefficients, the low adjusted R2 indicates the selected land use and
traffic-related explanatory variables can only explain the about 20% of
variability of the decay coefficients, which demonstrates that these
explanatory variables are not the dominant influence factors on dis-
tance decay. In fact, the distance decay of a place could be affected by
other factors such as socioeconomic characteristics and urban spatial
structure (Fotheringham, 1981; Hipp and Boessen, 2017), which are
also important dimensions affecting human spatial interaction. For
example, a place with well job-housing balance may have less spatial
interaction with other places, and residents may have little activity
space, resulting in faster distance decay. Therefore, it still needs to
further investigate the influence of other factors on distance decay. In
addition, experiments should be conducted in other cities to check if
consistent results could be achieved.

Acknowledgements

This research was jointly supported by the National Natural Science
Foundation of China (Nos. 41801373, 41771473, 41771441,
41801372, 51708426), China Postdoctoral Science Foundation (Nos.
2017M623112, 2018M632860), Fundamental Research Funds for the
Central Universities (Grants GK201803049, 2042017kf0235), and
National Key R & D Plan (2017YFC1405302, 2017YFB0503802),
Special Funds for Basic Scientific Research Business in Central Colleges
and Universities, (Independent Scientific Research Project of Wuhan
University in 2018, NO. 2042018kf0250), Shaanxi science and tech-
nology program (NO. 2019ZDLSF07-04), and the Open Fund of Key
Laboratory of Urban Land Resources Monitoring and Simulation,
Ministry of Land and Resources (KF-2018-03-006).

Conflicts of interest

The authors declare no conflict of interest.

References

Burnham, K.P., Anderson, D.R., 2004. Multimodel inference: understanding AIC and BIC
in model selection. Sociol. Methods Res. 33 (2), 261–304.

Chen, Y., 2015. The distance-decay function of geographical gravity model: power law or
exponential law? Chaos, Solitons Fractals 77, 174–189.

de Vries, J.J., Nijkamp, P., Rietveld, P., 2009. Exponential or power distance-decay for

commuting? An alternative specification. Environ. Plan. A 41 (2), 461–480.
Fang, Z., Yang, X., Xu, Y., Shaw, S.-L., Yin, L., 2017. Spatiotemporal model for assessing

the stability of urban human convergence and divergence patterns. Int. J. Geogr. Inf.
Sci. 31 (11), 2119–2141.

Fotheringham, A.S., 1981. Spatial structure and distance decay parameters. Ann. Assoc.
Am. Geogr. 71 (3), 425–436.

Fotheringham, A.S., O'Kelly, M.E., 1989. Spatial Interaction Models: Formulations and
Applications. vol. 1 Kluwer Academic Publishers, Dordrecht.

Gao, S., Liu, Y., Wang, Y., Ma, X., 2013. Discovering spatial interaction communities from
mobile phone data. Trans. GIS 17 (3), 463–481.

González, M.C., Hidalgo, C.A., Barabási, A.-L., 2008. Understanding individual human
mobility patterns. nature 453, 779.

Hägerstraand, T., 1970. What about people in regional science? Pap. Reg. Sci. 24 (1),
7–24.

Halás, M., Klapka, P., Kladivo, P., 2014. Distance-decay functions for daily travel-to-work
flows. J. Transp. Geogr. 35, 107–119.

Han, S.Y., Tsou, M.-H., Clarke, K.C., 2018. Revisiting the death of geography in the era of
Big Data: the friction of distance in cyberspace and real space. Int. J. Digital Earth 11
(5), 451–469.

Hipp, J.R., Boessen, A., 2017. The shape of mobility: measuring the distance decay
function of household mobility. Prof. Geogr. 69 (1), 32–44.

Huff, D.L., 1963. A probabilistic analysis of shopping center trade areas. Land Econ. 39
(1), 81–90.

Kang, C., Ma, X., Tong, D., Liu, Y., 2012. Intra-urban human mobility patterns: an urban
morphology perspective. Phys. A 391 (4), 1702–1717.

Kang, C., Sobolevsky, S., Liu, Y., Ratti, C., 2013. Exploring human movements in
Singapore: A comparative analysis based on mobile phone and taxicab usages. In:
Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing.
ACM, Chicago, Illinois, pp. 1–8.

Kong, X., Liu, Y., Wang, Y., Tong, D., Zhang, J., 2017. Investigating public facility
characteristics from a spatial interaction perspective: a case study of Beijing hospitals
using taxi data. ISPRS Int. J. Geo-Inf. 6 (2).

Kordi, M., Fotheringham, A.S., 2016. Spatially weighted interaction models (SWIM). Ann.
Am. Assoc. Geogr. 106 (5), 990–1012.

Lee, K.H., Schuett, M.A., 2014. Exploring spatial variations in the relationships between
residents' recreation demand and associated factors: a case study in Texas. Appl.
Geogr. 53, 213–222.

Li, Y., Liu, L., 2012. Assessing the impact of retail location on store performance: a
comparison of Wal-Mart and Kmart stores in Cincinnati. Appl. Geogr. 32 (2),
591–600.

Liang, X., Liu, Y., Qiu, T., Jing, Y., Fang, F., 2018. The effects of locational factors on the
housing prices of residential communities: the case of Ningbo, China. Habitat Int. 81,
1–11.

Liu, Y., Kang, C., Gao, S., Xiao, Y., Tian, Y., 2012. Understanding intra-urban trip patterns
from taxi trajectory data. J. Geogr. Syst. 14 (4), 463–483.

Liu, Y., Sui, Z., Kang, C., Gao, Y., 2014. Uncovering Patterns of Inter-Urban Trip and
Spatial Interaction from Social Media Check-In Data. PLoS ONE 9 (1), e86026.
https://doi.org/10.1371/journal.pone.0086026.

Liu, X., Gong, L., Gong, Y., Liu, Y., 2015a. Revealing travel patterns and city structure
with taxi trip data. J. Transp. Geogr. 43, 78–90.

Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G., Shi, L., 2015b. Social sensing: a
new approach to understanding our socioeconomic environments. Ann. Assoc. Am.
Geogr. 105 (3), 512–530.

Louail, T., Lenormand, M., Picornell, M., Cantú, O.G., Herranz, R., Frias-Martinez, E.,
Ramasco, J.J., Barthelemy, M., 2015. Uncovering the spatial structure of mobility
networks. Nat. Commun. 6, 6007.

Ma, X., Liu, C., Wen, H., Wang, Y., Wu, Y.-J., 2017. Understanding commuting patterns
using transit smart card data. J. Transp. Geogr. 58, 135–145.

Martínez, L.M., Viegas, J.M., 2013. A new approach to modelling distance-decay func-
tions for accessibility assessment in transport studies. J. Transp. Geogr. 26, 87–96.

Fig. 7. (continued)

X. Yang, et al. Journal of Transport Geography 78 (2019) 29–40

39

http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0005
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0005
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0010
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0010
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0015
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0015
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0020
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0020
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0020
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0025
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0025
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0030
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0030
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0035
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0035
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0040
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0040
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0045
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0045
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0050
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0050
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0055
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0055
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0055
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0060
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0060
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0065
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0065
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0070
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0070
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0075
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0075
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0075
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0075
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0080
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0080
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0080
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0085
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0085
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0090
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0090
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0090
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0095
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0095
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0095
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0100
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0100
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0100
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0105
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0105
https://doi.org/10.1371/journal.pone.0086026
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0110
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0110
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0115
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0115
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0115
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0120
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0120
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0120
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0130
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0130
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0135
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0135


Nakaya, T., Fotheringham, S., Charlton, M., Brunsdon, C., 2009. Semiparametric
Geographically Weighted Generalised Linear Modelling in GWR 4.0.

Qian, X., Ukkusuri, S.V., 2015. Spatial variation of the urban taxi ridership using GPS
data. Appl. Geogr. 59, 31–42.

Roy, J.R., Thill, J.-C., 2004. Spatial interaction modelling. Pap. Reg. Sci. 83 (1), 339–361.
Sen, A., Smith, T.E., 2012. Gravity Models of Spatial Interaction Behavior. Springer

Science & Business Media.
Shaw, S.-L., Tsou, M.-H., Ye, X., 2016. Editorial: human dynamics in the mobile and big

data era. Int. J. Geogr. Inf. Sci. 30 (9), 1687–1693.
Siła-Nowicka, K., Fotheringham, A.S., 2018. Calibrating Spatial Interaction Models from

GPS Tracking Data: An Example of Retail Behaviour. Computers, Environment and
Urban Systems.

Song, C., Qu, Z., Blumm, N., Barabási, A.-L., 2010. Limits of predictability in human
mobility. Science 327 (5968), 1018–1021.

Stewart, Fotheringham A., Charlton, M., Brunsdon, C., 1996. The geography of parameter
space: an investigation of spatial non-stationarity. Int. J. Geogr. Inf. Syst. 10 (5),
605–627.

Suárez-Vega, R., Gutiérrez-Acuña, J.L., Rodríguez-Díaz, M., 2015. Locating a supermarket
using a locally calibrated Huff model. Int. J. Geogr. Inf. Sci. 29 (2), 217–233.

Sui, D., Shaw, S.-L., 2018. Human dynamics in smart and connected communities.
Comput. Environ. Urban. Syst. 72, 1–3.

Tobler, W.R., 1970. A computer movie simulating urban growth in the detroit region.
Econ. Geogr. 46 (sup1), 234–240.

Tu, W., Cao, R., Yue, Y., Zhou, B., Li, Q., Li, Q., 2018. Spatial variations in urban public
ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 69,

45–57.
Ullman, E.L., 1980. Geography as Spatial Interaction. University of Washington Press.
Wang, Y., Jiang, W., Liu, S., Ye, X., Wang, T., 2016. Evaluating trade areas using social

media data with a calibrated Huff model. ISPRS Int. J. Geo Inf. 5 (7).
Xu, Y., Shaw, S.-L., Zhao, Z., Yin, L., Fang, Z., Li, Q., 2015. Understanding aggregate

human mobility patterns using passive mobile phone location data: a home-based
approach. Transportation 42 (4), 625–646.

Xu, Y., Shaw, S.-L., Zhao, Z., Yin, L., Lu, F., Chen, J., Fang, Z., Li, Q., 2016. Another tale of
two cities: understanding human activity space using actively tracked cellphone lo-
cation data. Ann. Am. Assoc. Geogr. 106 (2), 489–502.

Yang, X., Fang, Z., Yin, L., Li, J., Zhou, Y., Lu, S., 2018a. Understanding the spatial
structure of urban commuting using mobile phone location data: a case study of
Shenzhen, China. Sustainability 10 (5), 1435.

Yang, Z., Franz, M.L., Zhu, S., Mahmoudi, J., Nasri, A., Zhang, L., 2018b. Analysis of
Washington, DC taxi demand using GPS and land-use data. J. Transp. Geogr. 66,
35–44.

Yin, L., Wang, Q., Shaw, S.-L., Fang, Z., Hu, J., Tao, Y., Wang, W., 2015. Re-identification
risk versus data utility for aggregated mobility research using mobile phone location
data. PLoS One 10 (10), e0140589.

Yuan, Y., Raubal, M., 2012. Extracting dynamic urban mobility patterns from mobile
phone data. In: International Conference on Geographic Information Science.
Springer, pp. 354–367.

Yue, Y., Wang, H.-d., Hu, B., Li, Q.-q., Li, Y.-g., Yeh, A.G.O., 2012. Exploratory calibration
of a spatial interaction model using taxi GPS trajectories. Comput. Environ. Urban.
Syst. 36 (2), 140–153.

X. Yang, et al. Journal of Transport Geography 78 (2019) 29–40

40

http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0140
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0140
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0145
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0145
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0150
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0155
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0155
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0160
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0160
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0165
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0165
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0165
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0170
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0170
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0175
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0175
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0175
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0180
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0180
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0185
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0185
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0190
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0190
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0195
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0195
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0195
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0200
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0205
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0205
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0210
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0210
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0210
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0215
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0215
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0215
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0220
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0220
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0220
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0225
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0225
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0225
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0230
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0230
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0230
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0235
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0235
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0235
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0240
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0240
http://refhub.elsevier.com/S0966-6923(18)30921-9/rf0240

	Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data
	Introduction
	Study area and dataset
	Study area
	Dataset

	Method
	Extracting human movement trips from mobile phone dataset
	Estimating the coefficients of distance decay of human movement trips
	Geographically weighted regression analysis

	Results and discussion
	Distance decay characteristic of human movements
	Global distance decay characteristic
	Local distance decay characteristics

	Impact factors of distance decay
	Regression analysis of the OLS model
	Results of GWR model


	Conclusion
	Acknowledgements
	mk:H1_19
	mk:H1_20
	References




