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A B S T R A C T

The recent boom of sharing economy along with its technological underpinnings have brought new opportunities
to urban transport ecosystems. Today, a new mobility option that provides station-less bike rental services is
emerging. While previous studies mainly focus on analyzing station-based systems, little is known about how this
new mobility service is used in cities. This research proposes an analytical framework to unravel the landscape
and pulses of cycling activities from a dockless bike-sharing system. Using a four-month GPS dataset collected
from a major bike-sharing operator in Singapore, we reconstruct the temporal usage patterns of shared bikes at
different places and apply an eigendecomposition approach to uncover their hidden structures. Several key built
environment indicators are then derived and correlated with bicycle usage patterns. According to the analysis
results, cycling activities on weekdays possess a variety of temporal profiles at both trip origins and destinations,
highlighting substantial variations of bicycle usage across urban locations. Strikingly, a significant proportion of
these variations is explained by the cycling activeness in the early morning. On weekends, the overall variations
are much smaller, indicating a more uniform distribution of temporal patterns across the city. The correlation
analysis reveals the role of shared bikes in facilitating the first- and last-mile trips, while the contribution of the
latter (last-mile) is observed to a limited extent. Some built environment indicators, such as residential density,
commercial density, and number of road intersections, are correlated with the temporal usage patterns. While
others, such as land use mixture and length of cycling path, seem to have less impact. The study demonstrates the
effectiveness of eigendecomposition for uncovering the system dynamics. The workflow developed in this re-
search can be applied in other cities to understand this new-generation system as well as the implications for
urban design and transport planning.

1. Introduction

In the past few decades, with increasing concerns over global
warming and rapid urbanization, numerous efforts have been devoted
in cities to advance public bike sharing as a viable and green mobility
solution. Bike-sharing systems allow citizens' short-term access to bi-
cycles, when needed, without bearing the cost and responsibilities of
bike ownership. The successful implementation of bike-sharing systems
could provide alternative solutions to many urban issues, such as traffic
congestion, air pollution, energy deficiency, and deterioration of

human health (DeMaio, 2009; Jäppinen, Toivonen, & Salonen, 2013;
W. H. Organization, 2002).
Since 1965, bike-sharing systems have evolved through several key

phases. The first bike-sharing program, the White Bikes, was initiated in
Amsterdam as dockless and free (DeMaio, 2009; Shaheen, Guzman, &
Zhang, 2010). However, its implementation sustained for a short while
due to bike theft and vandalism. In order to better manage bikes and
improve service stability, later generations of bike-sharing system re-
quire users to pick up and drop off bikes at fixed locations. Such bike-
sharing systems with docking stations quickly spread across cities and
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successfully promoted cycling activities. However, the stability offered
by docking stations came with limited accessibility of bikes and flex-
ibility for users (Fishman, Washington, Haworth, & Mazzei, 2014). The
deployment of bikes was also limited by the available space for docking
stations, particularly in condensed cities.
The recent boom of sharing economy along with its technological

underpinnings have brought new opportunities to the bike-sharing
markets. Today, a new type of system that provides station-less bike
rental services is expanding (iiMedia Research, 2017; Zhang, Shaheen,
& Chen, 2014). Many cities nowadays are implementing this new
generation system, which allows people to locate and unlock a bicycle
using a smart-phone app, and then leave the bike wherever the journey
ends. These new services are quickly adopted by citizens, who view
them as a healthy and cost-effective mobility solution, or simply a kind
of fashion.
Previous studies have mainly focused on examining the utilization

of station-based systems (Froehlich, Neumann, Oliver, et al., 2009;
Vogel, Greiser, & Mattfeld, 2011). Little is known, however, about the
usage of this new generation bike-sharing scheme. As bicycles are un-
leashed from docking stations, users will have more freedom to choose
where to start and end their trips. The spatiotemporal patterns of cy-
cling activities induced by the dockless systems may be quite different
from traditional ones with fixed rental stations. To date, limited studies
have examined the usage of dockless bike-sharing systems in cities
(Bao, He, Ruan, Li, & Zheng, 2017; Shen, Zhang, & Zhao, 2018). These
studies focused more on analyzing the intensity of cycling activities and
their spatial distributions. How travel demand changes over time at
different locations and how these temporal signatures vary among
places were not investigated.
This study aims to unravel the landscape and pulses of cycling ac-

tivities from a dockless bike-sharing system. Using a four-month GPS
dataset collected from a major bike-sharing operator in Singapore, we
reconstruct the temporal usage patterns of shared bikes across urban
locations based on millions of cycling trips extracted from the dataset.
An eigendecomposition approach is then employed to uncover the
hidden structures of these temporal patterns by revealing how they
resemble or deviate from the base mode (average pulse) of the city.
Then, several key built environment indicators are derived and corre-
lated with bicycle usage patterns. Finally, we visualize the spatial dis-
tribution of places with distinctive temporal signatures to gain location-
specific insights.
The paper is organized as follows. Section 2 provides a compre-

hensive review on the evolution of bike-sharing systems and relevant
research. Section 3 describes the dataset and study area, followed by
detailed descriptions of methodologies. Results are then presented and
analyzed in Section 4. Finally, in Section 5, we conclude our study and
discuss future research directions.

2. Literature review

2.1. History of bike sharing

The conventional bike-sharing programs have gone through three
stages as summarized in (DeMaio, 2009; Shaheen et al., 2010). The first
bike-sharing program, the White Bikes, was introduced in Amsterdam
in the 1960s where all bikes were offered unlocked and free-of-charge.
Its implementation sustained for a short time mainly due to bike theft
and vandalism. The following coin-deposit generation in 1990s in-
troduced docking stations and required users to pay a small amount of
deposit before initiating trips at a particular station. Due to the anon-
ymous nature of payment and the lack of tracking technology, such
systems also suffered from instability of services due to bike theft, be-
cause one can simply appropriate the bikes after paying for the deposit.

The third generation of bike-sharing system is known as the information
technology (IT) based system. The IT-based system has equipped with
many new technologies such as mag-stripe cards and mobile phone
access. This system quickly spread across cities around the globe and
successfully promoted cycling activities (Handy, Heinen, & Krizek,
2012; Larsen, 2013; Pucher, Lanversin, Suzuki, & Whitelegg, 2012). By
2010, there are 101 bike-sharing programs worldwide with 139,300
bikes and 9,332 stations. However, its accessibility and scale of devel-
opment as well as users' flexibility were constrained by the locations
and sizes of docking stations (Fishman, Washington, & Haworth, 2014;
Fishman, Washington, Haworth, & Mazzei, 2014). It was until recently,
with the prevalence of mobile phones and mobile payment, that the
invention of dockless systems fully unleashed the potential of urban
bike sharing. In 2015, Ofo and Mobike, two start-up companies in
China, introduced a new generation of fully dockless bike-sharing
system. In this system, bikes are embedded with GPS sensors and users
can locate and unlock bikes with a smartphone app and later pay for it
using mobile payment. Unrestrained by the docking stations, users can
reach wider destination and this system has expanded tremendously in
the recent two years. By March 2017, there have been over 4 million
dockless bikes deployed in China while there were only 180,000 in
February 2012 (iiMedia Research, 2017; Zhang et al., 2014). This
system has also spread to Hong Kong, Singapore, and cities in western
countries.

2.2. Spatiotemporal analysis of bike sharing

Spatiotemporal analysis of bike-sharing data (stock or trip data) can
provide evidence for service monitoring and optimization. Most of the
docked bike-sharing studies have access only to the stock data that
tracks the variation in the number of available bikes, while the trip
data, which include origins and destinations, reveal more information
of the service. To analyze stock data, clustering techniques are usually
adopted to categorize stations that share similar behaviors. The tem-
poral profile of normalized available bikes is calculated for clustering.
Clustering was employed to identify three clusters in Dublin's bike-
sharing system namely attractor, generator and balanced stations in
(Jiménez, Nogal, Caulfield, & Pilla, 2016). Similarly, Froehlich et al.
found six clusters that share similar temporal patterns of bike usage
from Bicing, a bike-sharing system in Barcelona, and studied how these
relate to the neighborhood and time of day (Froehlich et al., 2009).
Clustering can also be used to evaluate policy changes. For example,
Lathia et al. investigated the variations of clusters before and after the
implementation of new user-access policy and found many stations
exhibit an opposite trend after the policy change (Lathia, Ahmed, &
Capra, 2012). For trip data, community detection can be employed to
identify subgroups of areas that have strong intra-area connection than
inter-area. It was also found to effectively reveal the spatial structures
and communities of bike-sharing systems in a comparative study of five
cities (Austwick, OBrien, Strano, & Viana, 2013).
Geo-visualization of the spatiotemporal patterns provides a pow-

erful tool to comprehend the dynamics of bike sharing. For example,
Corcoran et al. mapped the bike flows between regions in different time
periods to study the impacts of weather conditions and calendar events
on the cycling dynamics in Brisbane (Corcoran, Li, Rohde, Charles-
Edwards, & Mateo-Babiano, 2014). They found that strong winds and
rainfall reduce the number of trips significantly while the effect of
temperature is limited and the calendar events induce subtle change in
the spatial distribution of trips. Through visualizing trip chain as elliptic
curves, Zhao et al. revealed significant variations between men and
women in using public bikes, as well as between weekday and week-
ends (Zhao, Wang, & Deng, 2015). Another study by Zhang et al. ex-
amined the trip chains and transition activities of bike-sharing trips in
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Zhongshan, a city of Guangdong province in China where non-motor-
ized transport took the biggest mode share and found that most users
use cycling as a single transport mode for commuting (Zhang, Brussel,
Thomas, & van Maarseveen, 2018). More comprehensive visualization
of bike-sharing trips can be found in (Oliveira, Sotomayor, Torchelsen,
Silva, & Comba, 2016). It developed an interactive visualization tool to
support exploring mobility patterns of bike sharing which can help
bike-sharing companies better serve the commuters.

2.3. Determinants of bike-sharing trips

Understanding the determinants of human travels by different
transportation means (e.g., metro, bus, taxi and bicycle usage) can in-
form urban planning and policy making (Tu et al., 2018; Zhang, Xu, Tu,
& Ratti, 2018; Zhou et al., 2017). Previous studies have devoted con-
siderable efforts into examining the usage of bike-sharing systems and
its influencing factors. Demographics such as population density,
median household income, and automobile ownership have been
proved to impact the spatiotemporal dynamics of shared bike trips
(Buck & Buehler, 2012). Many studies also demonstrated that built
environment indicators such as proximity to bus and train stations,
density docking stations, length of bike lanes as well as density of and
proximity to points-of interests (POIs) among others are generally po-
sitively correlated with cycling demand (de Chardon, Caruso, &
Thomas, 2017; Wang, Lindsey, Schoner, & Harrison, 2015; Zhang,
Thomas, Brussel, & Van Maarseveen, 2017). Considering the seasonal
and daily variations of bicycle usage, weather is another nonnegligible
factor. El-Assi et al. reported that weather conditions (e.g., humidity,
temperature, precipitation and snow) in addition to demographic and
built environment characteristics have remarkable influence on the
demand of shared bike trips in Toronto, Canada (El-Assi, Mahmoud, &
Habib, 2017). Zhao et al. found gender also an important factor when
examining the duration of shared bike trips and the formation of trip
chains in Nanjing, China (Zhao et al., 2015). Their study found that
women are more likely to make round trips than men, especially on
weekdays. Faghih-Imani and Eluru incorporated spatial and temporal
effects for modelling bicycle demand of bike sharing system in New
York (Faghih-Imani & Eluru, 2016). Exogenous variables such as
transport network infrastructure, POIs, and temporal attributes were
incorporated in their models. In short, the above studies suggest that
population density, employment density, bicycle infrastructures (i.e,
lanes, bike station count, station density, etc.), transportation law (e.g.,
liquor licenses and Helmet), and other built environment characteristics
(e.g., land use mixture) are potential factors that impact the usage of
bike-sharing systems.
Most of the previous studies examined the usage of shared bikes at

station level mainly due to the fact that early bike-sharing systems re-
lied on docking stations for fleet management and service stability. The
new dockless bike-sharing system, however, released this restriction
which allows bike users to initiate and terminate their trips wherever
they desire. Therefore, previous studies focusing on shared bike usage
at station level confront challenges as trips are no longer biased towards
docking stations. Recently, Shen et al. noticed this difference and
modelled the impact of fleet size, built environment characteristic and
weather condition on the usage of dockless bike-sharing system in
Singapore (Shen et al., 2018). They found that the usage of shared bikes
increased with the expansion of the fleet size though its marginal return
diminishes, and weather and built environment play important roles as
well. However, limited attention was paid to the spatiotemporal dy-
namics of bicycle usage. Considering the hour-to-hour variations, our
study goes further to delineate the landscape and the pulses of cycling
activities through eigendecomposition, thus providing a comprehensive
picture of the usage patterns of shared bikes in a condensed city.

3. Research design

3.1. Extract origin-destination trips from the bike-sharing dataset

Singapore is a city-state with a total area of 721.5 km2 and a po-
pulation of 5.6 million as of 2016. It is one of the most densely popu-
lated and urbanized areas in the world. The city possesses an integrated
public transport system with a mode share of 67% during peak hours.
Among different public transport modes, buses take up 48% of the
average daily ridership, as compared to 38% for mass rapid transit
(MRT), 12% for taxis, and 2% for light rail transit (LRT). Dockless bike-
sharing programs entered Singapore in February 2017 and expanded
rapidly thereafter. By the end of October 2017, one of the largest op-
erators in Singapore has deployed more than fifty thousand bikes in the
island city.
The GPS dataset1 used in this study was collected from one of the

largest dockless bike-sharing operators in Singapore from July 1st to
October 31st, 2017. It tracks for each bike a unique 9-digit ID and the
real-time location at an average frequency of 55 s when the bike is not
occupied. In other words, the locations of bikes are not reported in this
dataset when they are rented by users. By organizing the geolocations
of each bike in chronological order, we reconstruct GPS trajectories of
all the bikes, and perform a trajectory segmentation to derive OD trips.
After sorting the GPS records of each bike chronologically, we first

merge consecutive records with the same coordinates (lat/lng) and
mark the start and end time of the bike's stay at such locations. This
results in a location sequence {X1,X2, … ,Xn}, where Xi=(li, ti) denotes
a tuple of observation location and the timestamp. We then identify
oscillation sequences such as A0-A1-A0 and A0-A1-A0-A1-A0, where A0
and A1 refer to the consecutive location records in sequence
{X1,X2, … ,Xn}. This step is essential because it is unlikely that one can
ride a bike back to a location that is exactly the same as its previous
location even if it is a round trip. In other words, such oscillation se-
quences are likely to be caused by GPS drifting. To tackle this issue, the
medoid of each oscillation sequence is used to denote its representative
location (i.e., A0 for sequence A0-A1-A0), and we replace the corre-
sponding observations in {X1,X2, … ,Xn} with those medoids to form a
new sequence {Y1,Y2, … ,Yn}. After removing the oscillation se-
quences, it is still possible that some of the short-range displacements in
{Y1,Y2, … ,Yn} are caused by the imprecision of GPS positioning.
According to the statistics of a recent household interview travel survey
(HITS) in Singapore, almost all trips of the participants are longer than
150m, with exceptions of only six cycling trips which have the same
origin and destination (Shen et al., 2018). Therefore, to mitigate the
issue of location uncertainty, we iteratively merge two consecutive lo-
cations in {Y1,Y2, … ,Yn} with distance smaller than 150m and mark
their locations using the mean center. Finally, OD pairs are extracted
from the processed sequences and trips with a speed higher than 30 km/
h are filtered as invalid movements that could be caused by the redis-
tribution of bikes.
Fig. 1 shows the hourly number of trips averaged by day of week.

Bicycle usages from Monday to Friday show similar temporal patterns.
Two peaks are observed around 8:00–9:00 and 19:00–20:00, and a
higher number of trips is made by bicycle users during evening hours.
Cycling activities on weekends possess a different temporal profile.
Although the average travel demand in the early morning
(08:00–09:00) is compatible to that of weekdays, bicycle usage on
weekends reaches its first peak around noon time. Similar to weekdays,
there is a higher demand of shared bikes after 18:00. In general, bicycle
usages exhibit recurrent patterns on both weekdays and weekends.
From a spatial point of view, as shown in Fig. 2, cycling activities are
concentrated in particular areas of Singapore. The spatial distributions

1 See a visualization for more information about the dataset: https://www.
youtube.com/watch?v=_yfiuV4j9Jw
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are similar between weekdays and weekends, while slight differences
are observed in certain areas. For example, there is a higher demand for
shared bikes on weekends along the east coast, an outdoor attraction for
tourists and cyclists.

3.2. Analyze the spatiotemporal patterns of cycling activities through
eigendecomposition

This research introduces an eigendecomposition approach to ana-
lyze the spatiotemporal patterns of cycling activities in Singapore. The
technique was employed by previous researchers to uncover the
rhythms of mobile phone usage (Reades, Calabrese, & Ratti, 2009) and
human mobility patterns (Eagle & Pentland, 2009; Gong, Lin, & Duan,
2017). Eigendecomposition can be used to obtain the principal com-
ponents (PCs) of a dataset that best align with its inherent variation.
The resultant PCs, ranked by the fraction of the variance explained,
indicate the underlying structure of the dataset. While the corre-
sponding coefficients associated with a particular entity (e.g., temporal
usage pattern of bikes at a location) demonstrate its deviation from the
norm (i.e., average pulse of the city). Thus, the eigendecomposition can
be employed to answer our first research question — how do the
temporal patterns of bicycle usage at different places resemble or de-
viate from the base mode of the city?
Given that the temporal patterns of travel demand might be dif-

ferent at trip origins and destinations as well as on different types of
days, this research performs the eigendecomposition under four com-
binations: (1) arrival trips on weekdays, (2) departure trips on week-
days, (3) arrival trips on weekends, and (4) departure trips on week-
ends. To capture the temporal signatures of travel demand across the
island, we divide Singapore into 500× 500m grid and match the ex-
tracted OD pairs to each square. Note that among the 3,581 squares that
are generated, cycling activities are only observed in 1,095 squares. It is
also observed that bicycle trips tend to be concentrated in particular
areas of the city. Given the low-level usage of bikes in particular areas,
this study limits the analysis to the top 50% of the active squares. These
545 squares represent 80% of the total demand and each has an average
daily trips of more than 53.
Using departure trips on weekdays as an example, for each square,

we compute the hourly number of trips averaged across all weekdays
and normalize them using the average daily total of this square. This
results into a vector2 Ψi={ri, 1, ri, 2,…, ri, 24} where ri, j refers to the
hourly percentage of trips originated from square i during time window
j. Note that:

r 1
j

i j
1

24

, =
= (1)

By averaging Ψi across all the squares, we obtain the base mode of
cycling activities in the city:

u
N
1

i

N

i
1

=
= (2)

where N refers to the total number of squares (545 in this study). A
matrix M of size N×24 is then constructed with each row being
Φi=Ψi− u, which describes the deviation of a square's temporal sig-
nature from the base mode:

M

r r r
r r r

r r rn n n
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(3)

The covariance matrix C can then be calculated as:

C
N N

M M1 1

i

N

i
T

i
T

1
= =

= (4)

We then calculate the eigenvectors v1, v2,… , v24 and the associated
eigenvalues λ1, λ2,… , λ24 of C, with λj ranked in descending order. The
set of eigenvectors of covariance matrix C — which are orthogonal to
each other — are the PCs of matrix M, and the associated eigenvalues
denote the variance explained by each PC. The transformed dataset A of
size N×24 under the new coordinate system can be found as:

Fig. 1. Hourly number of trips averaged by day of week.

Fig. 2. Spatial distribution of arrival trips on weekdays and weekends.

2 A vector in this article corresponds to a row vector unless otherwise speci-
fied.
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A MV 1= (5)

where
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In matrix A, ai, j refers to the coefficient of the jth PC for the ith square
and thus each row contains the loadings of PCs for one entity (square).
Given a square, its coefficient of a PC indicates to what extent the
square's temporal patterns deviate from the base mode of the city. Note
that the original behaviour of a square can be reconstructed as follows:

u A Vi i= + (8)

where Ai refers to ith row vector of matrix A.
We then seek to unravel the overall structure of the dataset by in-

terpreting the significant few PCs and understand the temporal char-
acteristics of squares by examining their coefficients of these PCs. How
many PCs can adequately explain the original dataset is an important
but controversial problem in the realm of principal component analysis.
Here we adopt the empirical rules proposed in (Jolliffe, 2010): (1) the
first few PCs that account for more than 70% of the variance of the total
dataset; (2) the first few PCs whose eigenvalues are more than the 0.7
times the average of eigenvalues, and (3) PCs that are to the left of the
elbow points in the scree plot.

3.3. Derive built environment indicators

Built environment is considered to have strong influence on human
travel patterns and their mode choice. In this research, we construct
several key built environment indicators based on information of land
use and transportation infrastructure to investigate their associations
with shared bike usages. In particular, seven indicators, namely, floor-
area ratio (FAR) of residential building, FAR of commercial building,
land use mixture, network distance to MRT, number of bus stops,
number of road intersections, and length of cycling path, are derived.
Land use density and diversity which reflect urban functions are

often evaluated in transportation and behavioral research. Here, the
floor-area ratio (FAR) is used to denote land use densities. Both re-
sidential and commercial densities are derived from a building database
from the Singapore Land Transport Authority (LTA). The diversity or
land use mixture is measured based on 40,782 points-of-interest (POIs)
collected by the Google Place API. After reclassifying the POIs into
seven categories, as shown in Table 1, the Shannon entropy of each
square is calculated to reflect its land use mixture:

H p log p( ) ( )
i

n

i n i
1

=
= (9)

where pi denotes the percentage of POIs belonging to the ith category,
and n is the total number of categories.
Transportation infrastructure also plays an important role in

shaping individual mode choice. It is assumed that dockless bike-
sharing would strengthen the first- or last-mile connection to public
transit stations. To validate this hypothesis, for each square, its distance
to the nearest MRT station as well as the number of bus stops are
computed. The distance to MRT is calculated as the network distance of
the shortest route from the centroid of the square to its nearest MRT
station. Note that Singapore government has built dedicated cycling
paths to promote active mobility. The total length of cycling path in
each square is measured to examine the effectiveness of these cycling
infrastructures. In addition, the total number of road intersections is
calculated to reflect the road network density, which can also be
thought as a surrogate for street block size.

4. Results

4.1. Temporal signatures of bicycle usage

In this section, we first examine the space-time structures of bicycle
usage derived from the eigendecomposition. Table 2 presents, for each
type of trip, the total variance of the temporal signatures (at different
squares) and the percentage of variance explained by the top few PCs.
According to the results, the four types of trips possess quite different
structures. Trips on weekdays — no matter arrival or departure — ex-
hibit greater variance than their counterpart on weekends. The rhythms
of cycling activities on weekdays vary considerably from place to place
while it is more universal on weekends. By fixing the type of day, we
find that the variance of arrival trips is always higher than that of de-
parture trips, indicating a higher diversity of temporal patterns at trip
destinations. As trip destinations are tight to specific activity purposes,
places with different urban functions tend to produce different bicycle
usage patterns, resulting in a higher variance of the temporal patterns.
For both departure and arrival trips on weekdays, their 1st PCs ac-

count for a very large proportion of the total variance, and the top two
PCs, in combination, explain about 90% of the total variance. That
means the temporal patterns of bicycle usage on weekdays tend to vary
along certain directions (i.e., during certain time periods). Trips on
weekends, however, have less dominating 1st PCs, and it requires four
PCs to explain 90% of the total variance. This suggests that bicycle
usages at different places on weekends are more scattered, or random,
in the high dimensional temporal space. In short, the eigendecompo-
sition results illustrate a more dynamic yet rhythmic usage of shared
bikes on weekdays, and a more static yet slightly random structure on
weekends.
Given a certain type of trip, the top few PCs and their characteristics

reveal important information about the data structure. By examining

Table 1
Categorization of POIs from Google Place API.

Category Examples

1 Company and small business Accounting services, banks, doctor, dentist, travel agency, laundry
2 Government, organizations, institutions Church, city hall, embassy, museum, police, post office, university, school
3 Entertainments Art gallery, bar, beauty salon, casino, gym, hair care, movie theater, spa
4 Hotels Lodging, hotels
5 Retail Bakery, book store, department store, gas station, supermarket, liquor store, shopping mall
6 Restaurants Cafe, food, restaurant
7 Transportation Airport, bus stations, subway stations, taxi stand, train stations

Y. Xu, et al. Computers, Environment and Urban Systems 75 (2019) 184–203

188



the 1st PC of arrival trips on weekdays (Fig. 3B), we find a temporal
pattern that peaks in the early morning. The 1st PC of departure trips on
weekdays — which explains a lower but still significant amount of total
variance (68%) — shows a similar peak (Fig. 3F). That means cycling
activeness in the morning differs from place to place in Singapore while
it is less distinguishable during other periods. Slight differences, how-
ever, are observed from these two 1st PCs. Specifically, the 1st PC of
arrival trips suggests that if a square attracts more trips during
6:00–9:00, it is less likely that cyclists will ride to this place after 19:00
(Fig. 3B). On the other hand, if more trips originate from a place during
6:00–9:00, then fewer cyclists will start their trips from this place
thereafter (Fig. 3F). Note that the 2nd PC of departure trips — which
explains a substantial amount of the total variance (21%) — exhibits
notable transitions in the early morning and late afternoon (Fig. 3G).
These transitions suggest that at some places, trip generation is more
active from 08:00 to 09:00 and from 17:00 to 19:00 while at other
places, it is more active from 6:00 to 7:00 and in the evening. Here we
don't elaborate the characteristics of other PCs since they explain a very
limited proportion of the total variance.
Trips on weekends, as shown in Fig. 4, have less dominant 1st PCs.

But similar to weekdays, these 1st PCs exhibit notable peaks during
07:00–09:00, indicating a large spatial variation of cycling activities in
the morning (Fig. 4B and F). The 2nd PCs explain 26% and 22% of the
total variance for arrival and departure trips, respectively. These 2nd

PCs suggest a variation of travel patterns between daytime and other
periods. In other words, if more people start their trips at a place during
09:00–16:00, then less people will ride from here in the early morning
and in the evening (Fig. 4G). Such a variation also applies at trip des-
tinations (Fig. 4C).
For a given trip category, since the top few PCs can explain a sig-

nificant proportion of the total variance, the temporal characteristics of
cycling activities in any square can be mainly described by the linear

combination of the base mode (u) and these PCs (V), weighted by the
corresponding coefficients (Ai). For example, Fig. 5A shows the joint
distribution of the coefficients for the top two PCs for arrival trips
across all squares on weekdays. Four locations — which intersect with
the Woodlands HDB3 Blocks, Woodlands MRT Stn, City Hall MRT Stn,
and East Coast Park, respectively — are chosen to demonstrate how
their temporal signatures can be effectively reconstructed (Fig. 5B–E).
City Hall MRT Station is located in the CBD area of Singapore and
surrounded by hotels, commercial centres, museums and St. Andrew
Cathedral while, differently, Woodland MRT Station is located up to the
north border of Singapore surrounded by numerous public housing
blocks. Woodland HDB blocks, by its name, are public housing blocks in
the north region of Singapore and this square is right next to Woodland
MRT Station. East Coast Park is a seaside park with various entertain-
ment facilities including a cycling path. The exact locations of the four
places can be found in Appendix A.
The first square with Woodland MRT Stn has positive coefficients

for both PC1 and PC2. These positive values indicate a higher travel
demand in the early morning as compared to the base mode of the city
(Fig. 3A). Thus, the actual bicycle usage at this square exhibits two
peaks on weekdays, with the morning peak slightly higher than the
evening one (Fig. 5B). The square in Woodlands HDB Blocks has a
negative coefficient for PC1, which signifies a lower level of returning
trips in the morning (Fig. 5C). Both City Hall MRT Stn and East Coast
Park have negative coefficients for PC1 and PC2. The difference is that
the PC1 coefficient for City Hall MRT Stn is close to zero. The dominant
role of PC2 results into a temporal signature where larger ridership is

Table 2
Variance explained by the principal components (×10−8).

Trip type Total variance Average variance Variance explained by

1stPC 2ndPC 3rdPC 4thPC

Weekday arrival trips 21.8 0.907 18.7 (86%) 1.45 (7%) 0.615 (3%) 0.576 (3%)
Weekday departure trips 13.4 0.560 9.16 (68%) 2.89 (21%) 0.575 (4%) 0.407 (3%)
Weekend arrival trips 3.07 0.128 1.33 (43%) 0.807 (26%) 0.453 (15%) 0.197 (6%)
Weekend departure trips 2.69 0.112 1.45 (54%) 0.597 (22%) 0.232 (9%) 0.143 (5%)

Fig. 3. Results of eigendecomposition — weekday.

3 HDB, which is short for Housing Development Board, is a type of residential
housing property that is publicly governed and developed in Singapore. The
HDB flats were built primarily to provide affordable housing.
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observed during the daytime (Fig. 5D). Compared to City Hall MRT Stn,
the square in East Coast Park has negative coefficients that are com-
patible between PC1 and PC2, which indicates an even lower demand
in the early morning but an elevation of cycling activities in the evening
(Fig. 5E). The results shown in Fig. 5 suggest that bicycle usage patterns
at different places in Singapore can be well described by the first few
PCs and the corresponding coefficients. Note that we can also re-
construct the main signals of cycling activities for squares when they
serve as trip origins and/or on weekends. These examples can be found
in Appendix A.

4.2. Association between temporal signatures and built environment
characteristics

Previous studies have been conducted to examine the relationship
between cycling activities and built environment characteristics (Buck

& Buehler, 2012; Buehler, 2012; Mateo-Babiano, Bean, Corcoran, &
Pojani, 2016; Rixey, 2013; Wang et al., 2015). These studies — with
their focus on traditional station-based bike-sharing systems — have
suggested a close relationship between the two. This section in-
vestigates the relationship between the temporal signatures derived
from eigendecomposition and the key built environment indicators.
Table 3 shows the summary statistics of the seven indicators for the
active squares (545 in total), along with the statistics for all squares
with cycling activities as a reference (1,095 in total). In general, the
active squares tend to have better accessibility to public transit stations,
higher residential and commercial densities, more diverse land uses,
and better deployment of road network and cycling paths.
For each trip type, as described previously, the first one or two PCs

are able to explain a significant proportion of the total variance. The
coefficients of these PCs can thus be used to describe the temporal
patterns of bicycle usage at different urban locations. For weekday

Fig. 4. Results of eigendecomposition — weekend.

Fig. 5. (A) Joint distribution of PC1 and PC2 coefficients of the squares (weekday arrival trips); (B-E) Temporal patterns of the four locations reconstructed from
these two PCs.
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arrival trips, we examine the relationship between the coefficients of
the 1st PC and the associated built environment indicators (Fig. 6). Here
only the 1st PC is selected because it accounts for 86% of the total
variance. In other words, the squares show very little difference along
other eigenvectors (Appendix B). According to the results, two in-
dicators — namely residential density and land use mixture — have a
negative although not strong correlation with PC1 coefficients (Fig. 6A
and C). This indicates that locations with a higher public housing
density or mixed land use tend to attract fewer trips in the morning
while more in the evening. A very weak relationship, if any, is found
between the PC1 coefficient of a square and its network distance to the
nearest MRT station. However, to study whether MRT stations have a
potential effect in absorbing bicycle trips, we further produce a box
plot, showing the distribution of PC1 coefficients of the squares with
MRT stations against others (Fig. 6H). It is observed that most squares
with MRT stations have positive PC1 coefficients, while most of others
hold negative values. Compared to the base mode of the city, MRT
stations attract more trips during morning rush hours while fewer after
19:00. This indicates that shared bikes in Singapore serve as a potential
feeder to the MRT stations, facilitating the first-mile trips in the
morning.
For weekday departure trips, instead of using only the 1st PC, the 2nd

PC is also included in the correlation analysis due to the 21% of the

total variance it has explained. Specifically, we organize the squares
based on the combination of PC1 and PC2 coefficients, and compute the
mean value of the built environment indicators (Fig. 7). We also ex-
amine the distributions of coefficients for squares with and without
MRT stations. In contrast to the fact that MRT stations attract more trips
during morning rush hours (Fig. 6H), they produce fewer trips in the
early morning, as most of the MRT squares hold a negative PC1 coef-
ficient (Fig. 7A). It is likely thatin Singapore, shared bikes are more of a
“first-mile” solution than the “last-mille” facilitator. Interestingly, when
looking at the distribution of PC2 coefficients, it is mostly positive for
locations with MRT stations while negative for others (Fig. 7B). On the
one hand, it suggests that more trips are initiated from MRT stations
around the end of the morning rush hours (i.e., 8:00–9:00) rather than
at the beginning (i.e., 6:00–7:00). On the other hand, more trips tend to
start from MRT stations during afternoon rush hours (i.e., 17:00–19:00)
than in the evening. Therefore, we may deduce that shared bikes do
serve as a “last-mile” solution although to a limited extent.
High residential densities are mainly associated with positive PC1

and negative PC2 coefficients (Fig. 7C), indicating that in the morning,
residential blocks are the major generators of cycling trips. Squares
with higher commercial densities are associated with negative PC1 and
positive PC2 coefficients (Fig. 7D), suggesting a lack of demand from
commercial areas in the early morning. No clear relationships,

Table 3
Statistics of built-environment characteristics.

Squares with cycling activities Top 50% Active squares

Mean Standard deviation Mean Standard deviation

FAR of residential building 0.58 0.57 0.86 0.92
FAR of commercial building 0.10 0.25 0.12 0.29
Land use mixture 0.55 0.23 0.62 0.18
Network distance to MRT [km] 1.84 1.36 1.41 0.9
Number of bus stops 3.56 2.49 4.63 2.34
Number of road intersections 18.68 13.04 24.09 12
Length of cycling path [m] 48.83 190.97 84.73 236.86

Fig. 6. (A–G) The relationship between PC1 coefficients and built environment indicators — weekday arrival trips; (H) Distribution of PC1 coefficients for squares
with and without MRT stations.
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however, are observed between the squares' temporal signatures and
other built environment indicators (Fig. 7E–H).
Figs. 6 and 7 suggest that the temporal signatures of cycling activ-

ities on weekdays exhibit a structural variation that — to some extent
— aligns with the pulses of morning commuting activities in Singapore.
In the morning, the attractiveness of MRT stations increases, which is
partly contributed by the areas nearby, notably public housing districts.
On the other hand, although cycling demand in Singapore is higher in
the evening, trip purposes during off hours are more diverse. Thus, the
temporal signatures are less coupled with specific location character-
istics.
For weekend arrival trips, areas with negative PC1 but positive PC2

coefficients tend to have high commercial densities (Fig. 8D). The result
suggests that areas with active commercial development are associated
with lower attractiveness for cyclists in the early morning, but in-
creased popularity later on (i.e., after 10:00). In contrast, areas with
positive PC1 and PC2 coefficients tend to have more bus stops in gen-
eral (Fig. 8F), suggesting more bicycle trips absorbed by these areas
from early morning till late afternoon, but not in the evening. We
should also be reminded that some areas with compatible bus stop
deployments exhibit very different temporal signatures, which indicates

a more complicated relationship between the amount of bus stops and
the corresponding temporal signatures. The number of road intersec-
tions in a square is positively correlated with PC2 coefficient (Fig. 8G),
suggesting that urban locations with a dense road network tend to at-
tract more cyclists during the daytime.4 Other built environment in-
dicators, such as residential density, land use mixture, and length of
cycling path, play less a role in shaping the temporal signatures of cy-
cling activities as no obvious correlations are observed.
For weekend departure trips, most of the MRT squares have nega-

tive PC1 and PC2 coefficients (Fig. 9A and B), suggesting that MRT
stations — compared to the base mode of the city — produce fewer trips
in the morning. It is also observed that areas with higher PC1 coeffi-
cients tend to have higher residential densities (Fig. 9C), indicating that
for dense housing areas, more trips are generated in the early morning
particularly during 08:00–10:00. Areas with negative PC1 and PC2
coefficients have higher commercial densities (Fig. 9D) and more bus
stops deployed (Fig. 9F). Compared to the absorbing effect from early

Fig. 7. (A–B) Distribution of PC1 and PC2 coefficients for squares with and without MRT stations — weekday departure trips; (C-H) Mean value of built environment
indicators for squares with different temporal patterns.

4 Readers could refer to Appendix C for correlations between built environ-
ment indicators and each of the two PCs.
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morning till late afternoon (Fig. 8D and F), these areas produce more
bicycle trips only in the afternoon and during the night. The compar-
ison between arrival and departure trips reveals the rhythms and
asymmetry of cycling activities at these locations.

4.3. Spatial distribution of squares with distinctive temporal patterns

The eigendecomposition and correlation analysis have highlighted
the temporal structures of cycling activities in Singapore and their re-
lationship with the underlying built environment. To complement our
findings, this section further discusses areas with distinctive temporal
usage patterns and their geographic distributions.
On weekdays, the temporal patterns of cycling demand at trip

destinations can be dichotomized into two groups based on the values
of PC1 coefficient. The geographic distributions of these two groups are
visualized in Fig. 10A, overlaid with stations and routes of the MRT
system. Locations with positive PC1 coefficients, as described

previously, tend to attract more bicycle trips in the early morning.
Many of these locations, as shown in Fig. 10A, refer to squares with
MRT stations or the adjacent ones. The finding is in line with the dis-
cussion in Section 4.2 that during morning rush hours, MRT stations
play a more vital role in absorbing trips than other locations, high-
lighting its potential contribution to facilitating the “first-mile” of
morning travels. Apart from this co-location pattern, we also find a
cluster of squares with higher morning attractiveness in the north re-
gion of Singapore, which is part of the Woodlands-Sembawang-Yishun
community. These squares could serve as the final destinations of cy-
clists on weekday mornings. Right next to the north border of Singapore
and distant away from the city center, this area — as we conjecture — is
relatively more self-sufficient where citizens live and work. Such a job
housing balance may stimulate many intra-region cycling trips.
Regarding bicycle usage at trip origins (Fig. 10B), squares that

generate more trips in the morning (PC1 coefficient> 0) are generally
residential blocks that are relatively close to the MRT stations.

Fig. 8. (A–B) Distribution of PC1 and PC2 coefficients for squares with and without MRT stations — weekend arrival trips; (C-H) Mean value of built environment
indicators for squares with different temporal patterns.
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However, some of them are more active during 8:00–9:00 in the
morning and 18:00–19: 00 in the evening (red squares with PC2 coef-
ficient> 0), while some others more active during 6:00–7:00 and in the
evening (blue squares with PC2 coefficient< 0). We are unable to
uncover the driving forces that lead to these differences based on the
data we have used in this research. Incorporating other socio-
demographic information — such as census and household interview
travel survey — might help further explain the observed patterns. An-
other finding on weekdays is that the MRT stations and the CBD area
generate limited bicycle trips in the early morning (Fig. 10C). On the
one hand, it suggests the lack of “last-mile” trips from MRT stations as
compared to the “first-mile” ones to the stations. On the other hand, it
highlights the non-residential function of the CBD, where massive em-
ployment opportunities are offered by corporations and government
agencies.
Referring back to the discussion of weekend arrival trips (Fig. 8A),

we find that part of the MRT stations — the ones with positive PC1

coefficients — attract more trips in the morning, while the rest tends to
receive more trips in the evening. As shown in Fig. 10D, MRT stations in
residential areas mostly possess positive PC1 coefficients, indicating
that residents ride to MRT stations more in the morning and afternoon
as they engage in weekend activities and ride less to MRT stations in the
evening. On the contrary, most of the MRT stations in the CBD area
have negative PC1 coefficients. This can be caused by the lack of de-
mand on weekend mornings, followed by an increased attractiveness in
the evening as citizens ride to MRT stations after finishing weekend
activities. Besides the MRT squares, we further visualize all the squares
with negative PC1 but positive PC2 coefficient in Fig. 10E. These
squares, as discussed in Section 4.2, are associated with high com-
mercial densities. Through Fig. 8D and E, one may observe that high
commercial density areas, the CBD area, and the commercial centers
around MRT stations, are more attractive on weekend afternoons and
evenings.
For weekend departure trips, we visualize the spatial distribution of

Fig. 9. (A–B) Distribution of PC1 and PC2 coefficients for squares with and without MRT stations — weekend departure trips; (C-H) Mean value of built environment
indicators for squares with different temporal patterns.
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squares with positive PC1 coefficients (Fig. 10F). These locations serve
as active trip generators in the morning and they match relatively well
with the residential areas in Singapore. However, some of these loca-
tions exhibit a rush-hour surge in trip generation (red squares with PC2
coefficient> 0) while the others produce more trips during the daytime

(blue squares with PC2 coefficient< 0). Although the reasons remain
unclear, it is possible that such a difference in the temporal signatures is
related to particular types of human activities. For instance, areas
where cyclists perform more routine tasks (e.g., business and work re-
lated activities) might rely more on shared bikes during rush hours. At

Fig. 10. Spatial distribution of squares with distinctive temporal patterns.
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other places, where trips are more diverse and induced more by re-
creational activities, the rush-hour surge might be smoothed out by the
daytime activeness.

5. Conclusions and discussions

Dockless bike-sharing systems are undergoing rapid expansions in
Asian cities and worldwide. This will provide new opportunities yet
challenges to city operations, affecting how transport systems and road
infrastructures are designed and used. To date, limited research efforts
have been devoted to uncovering the space-time structures of ridership
from dockless bike-sharing systems. To fill this research gap, we analyze
a four-month GPS dataset collected from a major bike-sharing operator
in Singapore. Based on millions of cycling trips extracted from the da-
taset, we depict the temporal variations of bicycle usages at various
locations in the city. An eigendecomposition approach is hen used to
uncover the hidden structures of these temporal patterns.
The results illustrate a multifaceted view of shared bike usages in

Singapore. On weekdays, cycling activities possess a variety of temporal
profiles at both trip origins and destinations, highlighting substantial
variations of bicycle usage across urban locations. Strikingly, a sig-
nificant proportion of these variations (68% to 86%) is explained by the
first principal components (PCs) of the eigendecomposition. The char-
acteristics of these PCs suggest that cycling activeness in the early
morning play a key role in distinguishing bicycle usage patterns at
different places. On weekends, for both departure and arrival trips, the
overall variation is smaller than their counterpart on weekdays, sug-
gesting a more uniform distribution of temporal signatures across the
urban landscape. However, the eigendecomposition for weekends pro-
duces less dominant 1st PCs, and it requires four PCs to explain more
than 90% of the total variance. That means in Singapore, cycling ac-
tivities possess a more dynamic yet rhythmic space-time structure on
weekdays, while a more static yet slightly random structure on week-
ends.
The eigendecomposition approach can effectively describe the

temporal signatures of cycling activities at various locations based on
their coefficients of the first few (one or two) PCs. These coefficients are
then correlated with key built environment indicators to understand the
relationship between bicycle usage and urban space configurations.
Compared to the base mode of the city, locations with a higher re-
sidential density or land use mix tend to attract fewer trips on weekday
mornings while more in the evening. These residential blocks serve as
active trip generators in the morning, during which a lack of travel
demand is also observed from commercial areas. Other built environ-
ment indicators, such as length of cycling path in a square, is not cor-
related with the temporal signatures. This is partly because a con-
siderable proportion of trips takes place along sidewalks and footpaths,
and dedicated cycling lanes only cover particular areas of the island
city.
Another important finding on weekdays is that MRT stations have a

notable absorbing effect during morning rush hours, while they pro-
duce fewer trips during the same periods. This suggests that shared
bikes in Singapore are more of a “first-mile” facilitator than the “last-
time” solution. However, more in-depth analysis reveals that at MRT
stations, more trips are initiated around the end of the morning rush
hours rather than at the beginning, and more trips are produced during
afternoon rush hours than in the evening. Therefore, we may deduce
that shared bikes in Singapore do serve as a “last-mile” solution al-
though to a limited extent.
Cycling activities on weekends are generally less intensive in the

early morning. The correlation analysis for arrival trips suggests that

areas where commercial activities proliferate are associated with lower
attractiveness in the early morning but increased popularity later on.
Urban locations with a dense road network tend to attract more cyclists
during the daytime. The analysis for departure trips suggests that MRT
stations produce fewer trips in the morning, and dense housing areas
are associated with a morning activeness (08:00–10:00).
Finally, we visualize the spatial distribution of squares with dis-

tinctive temporal patterns and discuss location-specific insights. On
weekdays, there exists a universal pattern among most of the MRT
squares, where higher attractiveness is observed in the early morning.
On weekends, however, they show diverging patterns. MRT squares in
the CBD — the central area of Singapore — tend to attract more trips in
the afternoon and particularly in the evening, while the outer ones —
where many residential neighborhoods are located nearby — receive
more cyclists in the morning. Such a geographic difference aligns well
with the rhythm of human activities. In the morning, cyclists from re-
sidential areas ride to nearby MRT stations, from which many people
are taken to the central Singapore for weekend activities (e.g., shopping
and dining). At the end of the day, these activity locations start to
produce more cycling trips, taking people to nearby transit stations
which lead to their final destinations. In addition to the above findings,
most of the residential neighborhoods serve as active morning produ-
cers on both weekdays and weekends. Beyond this knowledge that is
more or less expected, these neighborhoods can be better distinguished
through their 2nd PCs, which suggest a dichotomy that further reveals
their respective active periods.
This study demonstrates how eigendecompostion can be used to

better understand the temporal rhythms of shared bike usages as well
as the variations across urban locations. Although other approaches,
such as unsupervised classification, have been employed to tackle
similar questions for station-based systems (Froehlich et al., 2009;
Vogel et al., 2011), the eigendecomposition approach could have its
own advantage over these methods for studying dockless bike-sharing
systems. As bicycles are unleashed from docking stations, the im-
provement in bicycle accessibility will produce a more continuous
cycling surface as compared to traditional systems with rental sta-
tions. In a dockless bike-sharing system, places that are nearby might
exhibit smooth transitions in their temporal usage patterns. These
transitions are sometimes difficult to capture based on unsupervised
classification methods (e.g., K-means, hierarchical clustering) due to
the nature of these algorithms. The eigendecomposition and principal
component analysis could capture these subtle differences by high-
lighting their structural variations along the eigenvectors. Although
this study does not compare the above algorithms, it is worthwhile to
perform comparative analysis in the future to further evaluate their
effectiveness. Nevertheless, the workflow developed in this research
can be applied in other cities to better understand the dynamics of
this new generation system as well as the implications for urban de-
sign and transport planning.
This work also points to a future research direction that we aim to

pursue. Currently, the temporal variations of cycling activities at each
location are averaged over weekdays or weekends to produce a re-
presentative curve. This allows us to study usage levels of shared bikes
over the 24 h. However, the day-to-day variations at each location re-
main unexplored. Many exogenous factors — such as weather, land use,
promotion of bike-sharing operators, and other special events — could
affect the regularities of a location's diurnal patterns. Understanding
these regularities or irregularities could provide additional insights into
the locations' temporal behaviors, which further support applications
such as short-term travel demand forecast and bicycle dispatch for re-
source optimization.
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Appendix A. Linear combination of eigenvectors - examples

Fig. A.1. Four selected squares in Singapore.

Fig. A.2. (A) Joint distribution of PC1 and PC2 coefficients of the squares (weekday departure trips); (B–E) Temporal patterns of the four locations reconstructed
from these two PCs.
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Fig. A.3. (A) Joint distribution of PC1 and PC2 coefficients of the squares (weekend arrival trips); (B-E) Temporal patterns of the four locations reconstructed from
these two PCs.

Fig. A.4. (A) Joint distribution of PC1 and PC2 coefficients of the squares (weekend departure trips); (B–E) Temporal patterns of the four locations reconstructed
from these two PCs.

Y. Xu, et al. Computers, Environment and Urban Systems 75 (2019) 184–203

198



Appendix B. Scree plot of eigendecomposition

Fig. B.1. Fraction of total variance explained by the PCs.

Appendix C. Correlations between built environment indicators and each of the two PCs

Fig. C.1. Correlation between built environment indicators and PC1 coefficients — Weekday departure trips.
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Fig. C.2. Correlation between built environment indicators and PC2 coefficients — Weekday departure trips.

Fig. C.3. Correlation between built environment indicators and PC1 coefficients — Weekend arrival trips.
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Fig. C.4. Correlation between built environment indicators and PC2 coefficients — Weekend arrival trips.

Fig. C.5. Correlation between built environment indicators and PC1 coefficients — Weekend departure trips.
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Fig. C.6. Correlation between built environment indicators and PC2 coefficients — Weekend departure trips.
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