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3.1 Introduction

The pulses of our cities are largely driven by human activities and their movements.
An improved understanding of where people are in space and time would benefit
urban and transport planning, and facilitate academic research in a wide range of
disciplines (e.g., geography, epidemiology, and economics). Traditionally, our
abilities to capture spatial and temporal patterns of population distributions largely
rely on census data. Despite of their usefulness in population studies, the collection
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of census data is costly and time consuming. Moreover, such data provide a static
view of population estimates, with update cycles that are relatively long (e.g.,
10 years). These issues limit the usability of census data in many application
domains, especially the ones (e.g., traffic management, disaster response, and epi-
demic control) that require timely and spatially detailed population information.
Although the ways of estimating population distributions have been enhanced in the
past few decades (Dobson et al. 2000; Harvey 2002a, b; Balk 2004; Bhaduri et al.
2007; Stevens et al. 2015), we are still in need of cost-effective ways to capture the
whereabouts of people in space and time, which are highly dynamic in its nature.

In recent years, mobile phone data have received much attention in geography
and other fields. Several advantages make mobile phone data a valuable resource
for studying population dynamics: (1) a high and growing penetration rate of
mobile phones around the world1, (2) various location-aware technologies used in
mobile phone positioning (Birenboim and Shoval 2015), and (3) ease of data
collection (e.g., little burden on individual participants). Two types of mobile phone
data, Erlang and call detail records (CDRs), have been widely used in existing
literature to study population distributions (Ahas et al. 2007; Girardin et al. 2009;
Reades et al. 2009; Sevtsuk and Ratti 2010). These studies regard phone com-
munication activities as an indicator of the presence of urban population. However,
these mobile phone data reveal partial aspects of population dynamics, given the
fact that Erlang measures aggregate call volume at cellphone towers, and CDRs are
generated during particular types of cellphone activities (i.e., initiating or receiving
a phone call/text message). It means many previous studies implicitly assume that
phone communication activities could properly reflect the distribution of urban
population. Nevertheless, whether this assumption holds has not been investigated.
Moreover, few studies have even examined whether phone communication activ-
ities could reflect the spatiotemporal distribution of mobile phone users.

To fill the research gap, this study uses a mobile phone data set collected in
Shanghai, China to answer an important research question: to what extent could
phone communication activities reflect the spatiotemporal distribution of mobile
phone users? The mobile phone data set used in this study consists of CDRs plus
other cellphone-related logs such as cellular handover and periodic location update.
To answer the research question, we extract all CDRs into a separate data set to
capture the intensity of mobile phone communications at different places in the city
over time. Meanwhile, the complete data set is used to derive the spatiotemporal
distribution of mobile phone users. Then, correlation and regression analyses are
performed to evaluate the relationships between the two types of distributions. The
research findings could reveal the potential bias of using phone communication
intensity to reflect the underlying population distribution, and provide useful

1According to the International Telecommunication Union (ITU 2015), there are more than
7 billion mobile phone subscriptions by the end of 2015, corresponding to a penetration rate of
97%. The penetration rate in developed countries reaches 121% by the end of 2014 (World
Telecommunication Development Conference 2014).
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information and guidelines of using large-scale mobile phone data in urban
dynamics research.

3.2 Related Work

The advent of mobile phones has changed how people interact with the outside
world (Schwanen and Kwan 2008). It also transforms the ways human activities are
sensed and understood. Mobile phone location data, which suggest locations visited
by people, have been used to better understand different aspects of human
dynamics. For example, there have been many studies which use Erlang data to
examine the rhythms of urban mobility patterns (Ratti et al. 2006; Reades et al.
2009; Sevtsuk and Ratti 2010). In these studies, the intensity of people’s phone
communication activities is used as an indicator of the presence of urban popula-
tion. Similarly, call detail records (CDRs) have been used to uncover collective
human activity patterns (Candia et al. 2008) and aggregate population movements
(Ahas et al. 2007, 2010a). Although it is reasonable to assume a certain degree of
correlation between the cellphone usage and the underlying population, the extent
to which they are correlated and how their relationships change over space and time
need to be further examined and validated. Some studies based on CDRs have used
spatiotemporal patterns of cellphone usage (e.g., call volume) to predict land use
types (Soto and Frías-Martínez 2011; Pei et al. 2014) and dense urban areas (Vieira
et al. 2010). The reliability of these predictions also depends on the assumption of
the relationship between cellphone usage and population distribution.

People organize their daily tasks (e.g., sending emails and browsing websites)
“on a timescale that is appropriate to its urgency” (Ball 2010, p. 692). Researchers
find that individual cellphone usage possesses a “bursty” nature (Candia 2008;
Barabási 2010). People could make several phone calls in a short period of time and
then none for hours. That means mobile phone data (e.g., Erlang and CDRs) could
lead to a biased view of human activities. In recent years, several studies have
investigated the bias of mobile phone data in geographical research (Ranjan et al.
2012; Zhao et al. 2016). However, these studies mainly focus on particular aspects
of human mobility patterns (e.g., radius of gyration and movement entropy). The
relationships between aggregate cellphone usage and population distribution are not
examined.

People often spend a large amount of time at specific locations such as home and
workplace. Studies have found that mobile phone data can be used to estimate
people’s activity “anchor” points (Gonzalez et al. 2008; Cho et al. 2011; Xu et al.
2015, 2016). These activity “anchor” points, especially home locations, are used to
estimate urban population distributions (Ahas et al. 2010b; Silm and Ahas 2010).
However, the anchor-point based approach associates individuals to one or few
fixed locations. It thus provides population estimates that are static or at a coarse
temporal resolution. Instead, Kang et al. (2012) compares people’s cellphone usage
and population distributions derived from LandScan data for Harbin, China at a
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finer temporal resolution (1 h). The authors conclude that the proportion between
active mobile subscribers and the actual total population varies in different areas,
thus cannot reflect the underlying population properly. However, by using two
CDR data sets collected in Portugal and France, Deville et al. (2014) find that the
density of active mobile phone users can be used to produce spatially and tem-
porally explicit estimations of population densities at national scales. It appears that
researchers have not reached a consensus. It is thus important to look deeper into
this issue, which has broad implications for human geography and other related
fields.

3.3 Study Area and Mobile Phone Data Set

Shanghai is a century old metropolis. The city has a resident population of 24
million as of 2014 and covers an area of 6340 km2 (Shanghai Bureau of Statistics
2014). It is the largest city in China by population. As a global financial center, its
annual gross domestic product (GDP) was ranked the first among all cities in China
in the past five years. The city consists of sixteen administrative districts and the
Chongming county (Fig. 3.1a). Eight of them on the west bank of Huangpu River
(i.e., Putuo, Zhabei, Hongkou, Yangpu, Jingan, Changning, Xuhui and Huangpu),
also known as Puxi, are considered as the historic and commercial center of
Shanghai (Fig. 3.1b).

Fig. 3.1 Study area: a administrative districts of Shanghai, b inset map of the central part (i.e.
Puxi) of Shanghai
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The mobile phone data set used in this study was collected on a workday in 2012
by a phone service provider in China. As shown in Table 3.1, this data set contains
CDRs plus other cellphone-related logs (e.g., regular update, periodic update,
cellular handover, power on, and power off). These cellphone-related logs enable us
to capture distributions of mobile phone users over space and time better than CDR
data. In this data set, each mobile phone record contains information such as the
type of event, time (i.e., when the event occurred), and geographic coordinates of
the serving cellphone tower. The average nearest distance among cellphone towers
operated by this phone service provider in Shanghai is 0.21 km.

Note that we removed mobile subscribers who had power on or power off event
during the study period, since it is difficult to infer their locations when mobile
phones are disconnected from the cellular network. The remaining data set after
filtering these individuals consists of 698,661 mobile subscribers. As illustrated in
Fig. 3.2, we first derive the spatiotemporal distribution of mobile phone users from
the complete data set. Meanwhile, we extract all CDRs into a separate data set to
capture the intensity of mobile phone communication at different places over time.
The relationships between the two types of distributions are then evaluated through
correlation and regression analyses.

Table 3.1 Summary of events captured in the mobile phone data set

Type Event Description

OT Phone
communication
(outbound)

A subscriber makes a phone call or sends a text message

IN Phone
communication
(inbound)

A subscriber receives a phone call or text message

RU Regular update Triggered by moving from the service area of a cellphone
tower to that of another

PU Periodic update Triggered by tower pinging if a subscriber has been silent
(i.e., no other events detected) for a certain period of time.
However, the duration of silence that triggers periodic
update is irregular. In addition, mobile phones which are
turned off or disconnected from the cellular network do not
receive pinging signals from the cellular network

CH Cellular handover Transfer of an ongoing phone call from one cellphone tower
to another due to a subscriber’s movements

ON Power on Mobile phone is turned on and connected to the cellular
network

OFF Power off Mobile phone is turned off and disconnected from the
cellular network
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3.4 Research Design

3.4.1 Defining Indicators of Aggregate Cellphone Usage

Mobile phones have become an essential part of people’s everyday lives. In recent
years, how people use their mobile phones and its societal implications have
attracted increasing research interests. When analyzing mobile phone data, previous
studies (e.g., Candia et al. 2008; Kang et al. 2012; Yuan et al. 2012) often processed
cellphone usage data to reflect either individual phone communication character-
istics (e.g., phone call frequency, inter-event time) or collective phone communi-
cation activity patterns (e.g., Erlang, call volume). In this study, two indicators of
aggregate cellphone usage are selected for the correlation analysis:

– V: volume of calls/text messages
– N: number of active mobile phone users.

Note that an individual’s cellphone trajectory S can be represented as:

S ¼ P1 x1; y1; t1; e1ð Þ;P2 x2; y2; t2; e2ð Þ; . . .;Pi xi; yi; ti; eið Þf g ð3:1Þ

where Pi denotes the ith cellphone record; xi and yi denote the longitude and
latitude of the serving cellphone tower; ti and ei represents the time and type of the
corresponding mobile phone event (see Table 3.1), respectively.

Given a geographic area A and a time interval T, we define: (1) VT
A as the total

number of phone calls/text messages that occurred within the area A during a time
interval T , and (2) NT

A as the total number of mobile phone users who have made or
received at least one phone call/text message within the area A during a time
interval T . The two indicators reflect important characteristics of aggregate cell-
phone usage, and are generated only using the CDRs extracted from the full data set
(i.e., records with event type e being IN or OT in Table 3.1).

Fig. 3.2 The mobile phone data set consists of call detail records (CDRs) and other
cellphone-related logs (e.g., regular update, periodic update, and cellular handover), which make
it possible to examine the spatiotemporal relationships between aggregate cellphone usage and
phone user distributions
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This study uses Thiessen polygons as the spatial units to derive the cellphone
usage indicators. Specifically, Thiessen polygons, which are generated based on the
spatial distribution of the cellphone towers, are used to approximate their service
areas (Fig. 3.3a). The two indicators can be calculated for each Thiessen polygon
using mobile phone records that occurred at the corresponding cellphone tower.
Figure 3.3b illustrates the global temporal patterns of the two cellphone usage
indicators (as well as the inbound and outbound phone communication activities) at
a 30-min time interval. The total volume of phone calls/text messages (V) stays
relatively low between midnight and 6:00. It starts to increase in the morning,
followed by a fluctuation stage (i.e., 10:00–17:00), and then decreases in the eve-
ning. The number of activemobile phone users (N) follows a similar pattern of V but
has lower intensities. The temporal variations of V and N indicate that the rela-
tionship between aggregate cellphone usage and the total number of mobile phone
users in the city varies greatly throughout the day. However, how their relationships
change over space and time remains unclear and is worth an investigation.

Fig. 3.3 a Thiessen polygons are generated based on the spatial distribution of cellphone towers
to approximate their service areas. The two indicators (V and N) are calculated at each Thiessen
polygon using the mobile phone records that occurred at the corresponding cellphone tower;
b Global temporal patterns of aggregate cellphone usage at a 30-min time interval (V total volume
of phone calls/text messages; N total number of active mobile phone users; IN total inbound phone
communication activities; OT total outbound phone communication activities)
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3.4.2 Deriving the Spatiotemporal Distribution of Mobile
Phone Users

People don’t use their mobile phones regularly over time. As CDRs only record the
locations visited by people during their phone communication activities, it is
questionable to use such data to infer human dynamics when no phone calls or text
messages take place. The mobile phone data set used in this study includes location
records generated by other events such as regular update (RU), periodic update
(PU), and cellular handover (CH). These mobile phone events enable us to infer
individual locations at a finer time interval. For example, the RU and CH events
allow an individual’s location to be continuously updated when he or she is moving
from the service area of one cellphone tower to another. When an individual stays at
one particular location or has no phone communication activities, his or her location
is still reported by the PU event. Thus, the complete data set (i.e., cellphone-related
logs along with the CDRs) enables us to estimate a phone user’s location at any
given time point no matter he or she is moving.

Hence, given an individual cellphone trajectory S, the phone user’s location at a
particular time point t can be reasonably estimated using the following criteria:
(1) if trajectory S contains at least one mobile phone record after time point t, then
the phone user’s location is estimated as xi; yið Þ using the mobile phone record
Pi xi; yi; ti; eið Þ. Here Pi denotes the first mobile phone record which occurred after
time point t; (2) if trajectory S has no mobile phone records after t, the mobile
phone’s location is estimated using the last mobile phone record which occurred
before time point t. By doing so, we can estimate each phone user’s location at any
given time point t, and aggregate all users at the level of cellphone tower service
area. These estimates of the spatiotemporal distributions of phone users can be
combined with the two cellphone usage indicators for correlation and regression
analysis.

It is necessary to note that these estimates are not without uncertainties. On one
hand, it is very difficult to pinpoint a mobile phone user’s location when it is
travelling among different cellphone tower service areas. On the other hand, given
the issues of cellphone load balancing or “ping-pong effect” (Isaacman et al. 2012;
Csáji et al. 2013), the x; y coordinates of a cellphone tower associated with a
particular mobile phone record might not reflect where a user actually stayed.
Hence, it is more appropriate to conduct the correlation analysis at a coarser spatial
granularity—for example, using a regular grid with a coarser spatial resolution than
the cellphone tower service areas—to mitigate the impact of spatial uncertainty.

3.4.3 Correlation and Regression Analysis

Many existing studies, which use mobile phone data for urban mobility research,
have an implicit assumption that phone communication activities are highly
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correlated to the population size, or at least the number of mobile phone users.
While this assumption might hold true, it is important to examine the role of time in
such relationships. For example, given a geographic area A, although the number of
phone calls/text messages may be roughly the same in early morning (e.g., 07:00–
07:30), in late afternoon (e.g., 17:00–17:30), and around midnight (e.g., 23:00–
23:30), the total number of mobile phone users observed in each time interval could
be quite different from each other. This study conducts a correlation analysis using
time as a control factor. As illustrated in Fig. 3.4, we first divide the study area into
1km � 1km regular grid cells. By partitioning a day into forty-eight 30-min time
windows, we capture the snapshots of aggregate cellphone usage and the number of
mobile phone users in each grid cell for each 30-min time window. These snapshots
are used to examine their correlations at different times in a day. We choose the
1km � 1km regular grid in order to obtain the estimates of phone user distribution
at a relatively fine spatial resolution while minimizing the spatial uncertainty of
mobile phone records.

To perform analysis at the selected spatiotemporal resolution, we first calculate
the two indicators of aggregate cellphone usage and the total number of mobile
phone users at the level of cellphone tower service areas (i.e., Thiessen polygons).
If a mobile phone user has more than one mobile phone record during a particular
time window, we use the Thiessen polygon that contains the first mobile phone
record as his or her representative location. If there is no mobile phone record
during a particular time window, it means this user did not move. Thus, the phone
user’s location can be estimated using the approach described in the previous
section. Once this step is completed, we transform the results onto the grid cells.
Considering that a Thiessen polygon could overlap with multiple adjacent grid
cells, we clip each Thiessen polygon into sub units. For each sub unit, the indicators

Fig. 3.4 Correlation analysis in a space-time context
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of aggregate cellphone usage (V and N) and the total number of mobile phone users
(Pop) are prorated based on the proportion of its area to the total area of the
corresponding Thiessen polygon. We then calculate V , N and Pop of each grid cell
by adding the values of all sub units that fall within the particular grid cell.

For each time interval T , we first analyze the correlation between the number of
mobile phone users (Pop) and each of the two cellphone usage indicators using
Pearson’s correlation coefficients:

qTPop;V ¼ cov PopT ;VTð Þ
rPopT � rVT

ð3:2Þ

qTPop;N ¼ cov PopT ;NTð Þ
rPopT � rNT

ð3:3Þ

where: (1) cov() stands for the covariance and rX denotes the standard deviation of
X; (2) PopT ¼ PopT1 ;Pop

T
2 ; . . .;Pop

T
m

� �
, VT ¼ VT

1 ;V
T
2 ; . . .;V

T
m

� �
, and

NT ¼ NT
1 ;N

T
2 ; . . .;N

T
m

� �
; (3) m denotes the total number of grid cells in the study

area. The values of qTPop;V and qTPop;N enable us to better assess their correlations
during different time periods of a day.

In this study, we introduce two types of regression models that have been
suggested in previous studies (Kang et al. 2012; Deville et al. 2014) to further
investigate the relationships between the number of mobile phone users and the
aggregate cellphone usage:

Model 1 : PopT ¼ a � VT þ b ð3:4Þ

Model 2 : PopT ¼ a � NT þ b ð3:5Þ

Model 3 : log10 PopTð Þ ¼ a � log10ðVTÞþ b ð3:6Þ

Model 4 : log10 PopTð Þ ¼ a � log10ðNTÞþ b ð3:7Þ

In these regression models, the dependent variable is the total number of mobile
phone users in each grid cell during a particular time window (PopT ), and the
independent variable is the cellphone usage indicator (VT or NT ). Model 1 and
Model 2 assume a linear relationship between PopT and VT (or NT ), while Model 3
and Model 4 (i.e., log-transformation models) quantify the power-law relationships
between Pop and each of the two cellphone usage indicators. The ordinary least
squares (OLS) method is used to derive the parameters of these regression models.
As the study day is partitioned into forty-eight 30-min time windows, each model
produces 48 sets of parameters. We then use three measures, which are the adjusted
R2, the root mean square error (RMSE), and the mean absolute percentage error
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(MAPE), to compare the performance of these regression models at different times
in a day2.

3.5 Results and Discussion

3.5.1 Correlation Between the Number of Phone Users
and the Two Cellphone Usage Indicators

Figure 3.5a shows the values of qTPop;V and qTPop;N and how they change over time.
In general, there is a high correlation between the total number of mobile phone
users (Pop) and each of the two cellphone usage indicators during the day time and
in the evening. Also, the correlation of Pop and the number of active mobile phone
users (N) is always higher than that of Pop and the volume of calls/messages (V) in
the same time window.

According to the temporal variations of qTPop;V and qTPop;N , the study day can be

categorized into several stages. From 07:00 to 21:30, the values of qTPop;V and

qTPop;N stay above 0.9 and remain relatively stable. A decrease of qTPop;V and qTPop;N
is observed during 00:00–04:00 and 21:30–24:00, which refer to the time when
people have fewer phone communication activities (see Fig. 3.3b). To our surprise,
there are some fluctuations of qTPop;V and qTPop;N during 03:30–05:00, which is
followed by a rising stage (05:00–07:00). These fluctuations, which are somewhat
counter-intuitive, encourage us to explore potential explanations. Specifically, we
derive several cellphone usage indicators to distinguish inbound and outbound
phone communication activities, and further examine their correlations with the
number of mobile phones:

– N Inbound Number of active mobile phone users derived from inbound phone
communications (IN) only

– N Outbound Number of active mobile phone users derived from outbound
phone communications (OT) only

– V Inbound Volume of inbound calls/messages
– V Outbound Volume of outbound calls/messages.

We find that the correlation coefficients of Pop versus N Outbound (i.e.,
qTPop;N Outbound shown in Fig. 3.5b) and Pop versus V Outbound (i.e.,

qTPop;V Outbound shown in Fig. 3.5c) exhibit smooth temporal variations before

07:00. However, the temporal patterns of qTPop;V Inbound and qTPop;N Inbound are very

2For Model 3 and Model 4, the three measures (adjusted R2, RMSE and MAPE) are calculated
after converting log10 PopTð Þ, log10 VTð Þ and log10 NTð Þ to the original scale (i.e., PopT , VT , and
NT , respectively).
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similar to that of qTPop;V and qTPop;N , respectively. This is probably because outbound
phone communications are initiated by mobile phone users, while inbound phone
communications could include push notifications such as advertisements, weather
forecast, news, etc. It is very likely that the fluctuations between 03:30–05:00 are
caused by these inbound messages. It also reminds us that the two primary indi-
cators, N and V , are the combined effects of outbound and inbound phone com-
munications, which not only are related to how people use their mobile phones, but
also are related to mobile phones’ passive interactions with the outside world.

3.5.2 Comparison of Regression Models

We include four regression models to further examine the relationships between the
total number of mobile phone users and each of the two cellphone usage indicators.

Fig. 3.5 a Pearson’s correlation coefficients of the total number of mobile phone users (Pop) and
each of the two cellphone usage indicators b Pearson’s correlation coefficients of Pop versus
N Inbound (i.e., qTPop;N Inbound) and Pop versus N Outbound (i.e., qTPop;N Outbound). N Inbound
denotes the number of active mobile phone users derived from the inbound phone communications
only. N Outbound denotes the number of active mobile phone users derived from the outbound
phone communications only; c Pearson’s correlation coefficients of Pop versus V Inbound (i.e.,
qTPop;V Inbound) and Pop versus V Outbound (i.e., qTPop;V Outbound). V Inbound denotes the volume
of inbound calls/text messages, and V Outbound denotes the volume of outbound calls/text
messages
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The adjusted R2, root mean square error (RMSE), and mean absolute percentage
error (MAPE) are used to assess the model performance (Fig. 3.6). As illustrated in
Fig. 3.6a, the two models with NT as the independent variable (i.e., Model 2 and
Model 4) have a higher adjusted R2 than the other two models in each time window.
However, when comparing the RMSE of the four models, we find that Model 3 and
Model 4 perform better than the other two models during the daytime (07:00–
18:00). Notice that the total number of mobile phone users (Pop) in the grid cells
could vary greatly from each other, it is important to use a normalized measure,
which is MAPE in our analysis, to further evaluate the model performance. As
illustrated in Fig. 3.6c, Model 3 and Model 4 have a much lower MAPE than the
other two models during the daytime. All the three measures suggest that Model 4
performs better than the other three models. The average MAPE of Model 4
between 00:00–07:00 is 58.5%, as compared to 35.1% between 07:00–24:00.

Comparisons of the four regression models indicate that the heterogeneity (or
variation) of Pop is better explained by the number of active mobile phone users
(NT ) than by the volume of calls/messages (VT ). As suggested by Barabási (2010),
human activities are not random but “bursty”3. At a given place during a given time
period, VT is more affected by the individual “burst” of phone communications than

Fig. 3.6 Comparison of the four regression models: a Adjusted R2; b Root mean square error
(RMSE); c Mean absolute percentage error (MAPE)

3In the context of this book, the author refers the word “burst” to brief periods of intensive human
activities (e.g., sending text messages) followed by long periods of no activities.
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NT is, which serves as one potential explanation to our findings. The model
comparisons also suggest that the relationships between the total number of mobile
phone users and the cellphone usage level are better explained by the
log-transformation models (i.e., Model 3 and Model 4) than by the simple linear
regression models (i.e., Model 1 and Model 2) when the independent variable (NT

or VT ) is fixed.
Although our findings suggest that the log-transformation models (i.e., Model 4)

better describes the relationship between Pop and N than the simple linear
regression models (i.e. Model 2), it is useful to compare the relationships of Pop
and N between these two models and examine how the relationships change over
time. The scatter plots of Pop versus N (Fig. 3.7a) suggest that it is inherently
biased to use aggregate cellphone usage to represent the number of mobile phone
users. More importantly, the slope of the regression lines indicates that the rela-
tionship between Pop and N varies greatly throughout a day. That means, even if a
place has (or two different places have) the same number of active mobile phone
users (N) during two different time periods, their values of Pop could be quite
different from each other.

Fig. 3.7 Scatter plots of: a Pop versus N; b log10 Popð Þ versus log10 Nð Þ during different time
windows. The black line in each plot denotes the regression line (the numbers in each plot of
Fig. 3.7a denotes the coefficient of the regression line)
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3.5.3 Cross Validation

We perform a k-fold cross validation to further assess the robustness of Model 4. In
particular, the mobile phone data set is partitioned into k subsets with roughly the
same size. During the data partition, each individual mobile phone user has an equal
probability (i.e., 1=k) of being assigned to any given subset. Thus, all the subsets
after data partition will have approximately the same distribution patterns. During
the cross validation process, each time k � 1 subsets are used as a training data set,
and the remaining subset is used as a validation data set. The training data set is
used to produce the parameters of Model 4, which are then used to predict the total
number of mobile phone users (Pop) of the validation data set. To ensure that each
subset covers an adequate number of samples, we choose k ¼ 3 for this particular
analysis. Specifically, we perform the 3-fold cross validation 10 times—with each
time using a new partition of the mobile phone data set—in order to control the
impact of data partition on the analysis results. By doing so, we obtain 30 (C2

3 � 10Þ
pairs of training and validation data sets, and several measures (e.g., average MAPE
and average RMSE) of the 30 iterations are used to evaluate the model
performance.

Note that we also compare the performance of Model 4 based on: (1) the
ordinary least squares (OLS) and (2) the population-weighted least squares
(PWLS). The model based on PWLS minimizes the sum of squared residuals
weighted by the total number of mobile phone users (Pop). Thus, the samples (i.e.,
grid cells) with smaller Pop will have less impact on the regression result. This
comparison is expected to generate additional insights into the prediction capability
of Model 4.

Figure 3.8 illustrates the model performance of OLS and PWLS. We find that
the OLS model generates similar MAPE from the 3-fold cross validation (i.e. green
line in Fig. 3.8a) and the full data set (i.e., green line in Fig. 3.6c), which indicates
the robustness of Model 4. On the other hand, the OLS model generates lower
MAPE (Fig. 3.8a) but higher RMSE (Fig. 3.8b) than the PWLS model. The tem-
poral variations of MAPE/RMSE produced by the two models can be better
understood by dividing the study day into two stages:

– Stage A refers to the time periods from 00:00 to 07:00 and from 21:30 to 24:00,
when the majority of people rest at home. During this stage, people have fewer
phone communication activities (Fig. 3.3b). The correlation between Pop and
the aggregate cellphone usage varies greatly during this stage (Fig. 3.5), which
causes notable fluctuations of prediction accuracy (as shown in Fig. 3.8a, b).

– Stage B refers to the time period from 07:00 to 21:30, when cellphone com-
munications and other human activities are active. During this stage, the pre-
diction accuracy is much better than that of stage A and remains relatively
stable.

We further examine the relationship between the prediction error (i.e. absolute
percentage error) and the value of dependent variable (Pop) during these two stages
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produced by OLS and PWLS, respectively. For each model, we aggregate the
samples (from validation data sets) during the stage A and the stage B, respectively.
For each stage, we organize the samples in an ascending order of Pop. We then
divide these samples into deciles (Q1, Q2, … Q10) and calculate the average
MAPE of each decile. Figure 3.8c illustrates the average MAPE of the samples
organized by deciles (generated by the two models) during the stage A. In general,
both models yield a better estimation as Pop gets larger. Also, PWLS generates
better results than the OLS model when the samples have a large value of Pop (i.e.,
Q6–Q10). An implication is that it is more appropriate to use PWLS than OLS

Fig. 3.8 The 3-fold cross validation: a Average MAPE of Model 4 based on the ordinary least
squares (OLS) method, and the population-weighted least squares (PWLS) method; b Average
RMSE of OLS and PWLS; c Average MAPE of samples by deciles of Pop for the stage A (i.e.,
00:00–07:00 and 21:30–24:00); d Average MAPE of samples by deciles of Pop for the stage B
(i.e., 07:00–21:30)

56 Y. Xu et al.



under certain scenarios (e.g., evacuation) when we want to produce better estimates
in populated areas.

Similar patterns are observed for the two models during the stage B (Fig. 3.8d).
Both models of this stage, which refers to daytime and early evening, perform
relatively well except for Q1 and Q2. The two models, especially PWLS, do not
perform well on Q1 and Q2 because these two deciles have a small value of Pop.
As shown in Table 3.2, the maximum value of Pop for Q1 and Q2 during the stage
B is 8.0 and 13.0, respectively. The model performance over Q1 and Q2 are
affected more by the unique characteristics of individual phone communication
activities due to a smaller number of mobile phone users.

The 3-fold cross validation suggests that it is more reasonable to use Model 4 to
approximate the relationship of Pop and N, especially during the daytime and in
early evening (i.e. Stage B). After removing the samples with very small values of
Pop (i.e., Q1 and Q2), we find that the average MAPE of OLS and PWLS models
during the stage A changes to 42.6 and 42.7%, respectively. The two models
perform better during the stage B, with an average MAPE of 33.0 and 32.8%,
respectively. Overall, the PWLS model performs better than the OLS model due to
its lower RMSE (Fig. 3.8b).

3.5.4 Spatiotemporal Patterns of Residuals

By performing the 3-fold cross validation, we are able to derive the residuals—
measured as the average percentage errors (i.e., Ypredicted�Yobserved

Yobserved
� 100%) of 30 itera-

tions using PWLS—at each grid cell for all time windows. A grid cell with a
positive or a negative percentage error (during a time window T) suggests that

Table 3.2 The range of value by Pop (i.e., the number of mobile phones) decile for stage A (from
00:00 to 07:00 and from 21:30 to 24:00) and stage B (from 07:00–21:30)

Stage A Stage B

Pop
decile

Minimum
value

Maximum
value

Pop
decile

Minimum
value

Maximum
value

Q1 1.0 20.0 Q1 1.0 8.0

Q2 21.0 32.0 Q2 9.0 13.0

Q3 33.0 45.0 Q3 14.0 18.0

Q4 46.0 61.0 Q4 18.0 25.0

Q5 62.0 80.0 Q5 26.0 34.0

Q6 81.0 109.0 Q6 35.0 46.0

Q7 110.0 150.0 Q7 47.0 63.0

Q8 151.0 214.0 Q8 64.0 92.0

Q9 215.0 304.0 Q9 93.0 168.0

Q10 305.0 984.0 Q10 169.0 1046.0
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Model 4 overestimates or underestimates the total number of mobile phone users
(Pop), respectively. The spatial and temporal patterns of these residuals can help us
better understand the relationship between Pop and N. As Model 4 produces better
estimations during the daytime and in early evening (Fig. 3.8), this section only
discusses the findings during the stage B, which covers twenty-nine 30-min time
windows from 07:00 to 21:30.

The residuals of a grid cell G during the stage B can be represented as follows:

G ¼ erorrTB1 ; erorrTB2 ; . . .; erorrTBi . . .; erorrTB29
� � ð3:8Þ

where TBi denotes the time windows (for example, TB1 refers to [07:00–07:30], and
TB29 refers to [21:00–21:30]). Figure 3.9a shows the residuals of a grid cell that
covers part of the Nanjing Road pedestrian-only shopping street (Fig. 3.9b), which
is one of the world’s busiest shopping streets located in Huangpu district in
Shanghai. The percentage error of this grid cell remains positive during most of the
time windows, which means that the model has mostly overestimated the total
number of mobile phone users. The constant overestimation reveals an important
fact that a larger percentage of people tend to use their mobile phones in this grid cell
(during the daytime and in early evening) as compared to the overall population.

Note that some grid cells may not have mobile phone users (i.e., Pop ¼ 0)
during particular time windows, which lead to missing values (i.e., errorTBi ¼ NA)
in the residual G. As the purpose of this analysis is to find grid cells with similar
temporal patterns of residuals, these missing values must be handled appropriately.
Figure 3.9c shows the distribution of grid cells with varying number of missing
values. It is likely that the grid cells with a large number of missing values reflect
less populated areas in Shanghai or areas where mobile phone records are sparse. In
this section, we focus on grid cells with no more than 10 missing values (4070 cells
in total). As shown in Fig. 3.9d, these grid cells mainly cover the core areas of
Shanghai (Fig. 3.1b) and some other administrative districts (e.g., Pudongxinqu,
Minhang, Songjiang, Qingpu, Jiading, and Baoshan). As these grid cells have
observations during the majority of the time windows, we replace the missing
values for each grid cell using a linear interpolation method. For instance, if the
percentage error of a grid cell is 10% during time window TB1, and 20% during time
window TB3, then the value during TB2 (if missing) is estimated as 15%.

We further divide the stage B into three time periods: (1) 07:00–12:00;
(2) 12:00–17:00, and (3) 17:00–21:30. For each grid cell, we calculate the per-
centage of time windows with positive and negative residuals (in each of these three
time periods). The temporal patterns of residuals during a particular time period can
be characterized as follows:

– If the percentage of time windows with positive residuals is equal to or larger
than 75, this time period is labeled as “dominated by overestimations”.

– If the percentage of time windows with negative residuals is equal to or larger
than 75, this time period is labeled as “dominated by underestimations”.

– Otherwise, this time period is labeled as “mixed patterns”.
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Figure 3.10 illustrates the major types of grid cells (C1–C14) with distinct temporal
patterns. It is interesting to find that none of these grid cells are mixed with time
periods dominated by overestimations (i.e., red segments) and underestimations
(i.e., green segments). It is likely that there are some inherent characteristics of the
built environment which govern the relationships between the aggregate cellphone
usage and the total number of mobile phone users. To better understand the geo-
graphic context of these grid cells, we map them onto Google Earth and visually
examine some of these places through photos, landmarks, and semantic descrip-
tions. As shown in Fig. 3.11, the grid cells with time period(s) dominated by
overestimations (i.e., C1–C7) cover some important commercial and business areas
in Shanghai (i.e., grid cells A to F). At these places, more (i.e., a larger percentage
of) people tend to use their mobile phones than the average (percentage) of overall

Fig. 3.9 a Temporal variations of residuals (i.e., percentage errors) of a grid cell that covers part
of the Nanjing Road pedestrian-only shopping street; b A street view of Nanjing Road (picture
from Google Image); c Distribution of grid cells with varying number of missing values;
d Geographic distributions of grid cells with no more than 10 missing values
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Fig. 3.10 Grid cells with different temporal characteristics (of residuals)

Fig. 3.11 The spatial distribution of grid cells with distinct temporal patterns of residuals. Grid
cells A to F, with certain time period(s) dominated by overestimations, refer to some important
commercial and business areas in Shanghai. Grid cells G to L, with certain time period(s)
dominated by underestimations, represent certain parks (e.g., G, J and L) and places traversed by
urban express ways (e.g., H, I, and K), 1Pictures are captured from Google Image and Panoramio
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population. We also find that the grid cells with time period(s) dominated by
underestimations (i.e., C9–C14) include some parks (i.e., grid cells G, J and L) and
places traversed by urban express ways (i.e., grid cells H, I and K). At these places,
people’s cellphone usage is less intense. The temporal patterns of residuals at these
selected places suggest that certain characteristics of the built environment—such
as land use type, points of interest (POI) and transportation infrastructures—could
be considered in the analysis to further understand the behavior of mobile phone
usage.

3.6 Conclusion

By using a mobile phone data set that consists of call detail records (CDRs) and
other cellphone-related logs (e.g., cellular handover and periodic location update)
collected in Shanghai, China, this study evaluates to what extent phone commu-
nication activities could reflect the spatiotemporal distribution of mobile phone
users. Specifically, we derive two cellphone usage indicators (volume of calls/
messages [V] and number of active mobile phone users [N]) as well as the total
number of mobile phone users observed at different places in the city over time, and
examine their relationships through correlation and regression analysis. We find
that correlations between the number of mobile phone users and each of the two
cellphone usage indicators remain high and stable (with Pearson’s correlation
coefficient above 0.9) during the daytime and in early evening (i.e., 07:00–21:30).
Their correlations are generally lower in other time periods, and exhibit notable
fluctuations between 00:00–07:00.

We then introduce four regression models (i.e., two simple linear regression
models and two log-transformation models) to further examine relationships
between the total number of mobile phone users (Pop) and the two cellphone usage
indicators. Several important findings are discovered. First, comparisons of model
performance indicate that the number of active mobile phone users (N) serves as a
better independent variable than the volume of calls/messages (V) when explaining
spatiotemporal distribution of mobile phone users. The volume of calls/messages—
at a given place during a particular time period—is likely affected by individual
“burst” of phone communication activities (Barabási 2010), which makes the
number of active mobile phone users (N) a better indicator of the mobile phone user
distribution. Second, the log-transformation model performs better than the simple
linear regression model (in predicting phone user distribution) when the indepen-
dent variable is fixed. Although the simple linear regression models do not have the
best prediction accuracy, our results illustrate that the relationship between the total
number of mobile phone users and the cellphone usage level varies greatly
throughout a day. It is likely to generate biased results if we use the intensity of
aggregate cellphone usage to directly reflect the mobile phone user distribution or
the underlying population distribution, and the degree of bias varies with time.
Researchers must be cautious when using phone communication activities to
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quantify certain aspects of urban dynamics. Third, the 3-fold cross validation
indicates that the log-transformation model (using V as the independent variable)
has a prediction error (i.e., mean absolute percentage error) of 32.8% during the
daytime and in early evening (i.e., 07:00–21:30), and 42.7% during other time
periods (i.e., 00:00–07:00 and 21:30–24:00). The spatiotemporal patterns of
residuals suggest that there exist some inherent characteristics of the built envi-
ronment which govern the relationships between the cellphone usage and the
number of mobile phone users. It suggests that CDR data can be used along with
other data sources (e.g., land use type, POI, and transportation infrastructures) to
deliver robust estimations of phone user distributions.

Mobile phone data can be leveraged to gain better insights into the whereabouts
of people in space and time, which suggests that it serves as a promising data source
to supplement traditional approaches (e.g., travel surveys) for studying dynamic
population distributions. However, challenges still remain. For example, the mobile
phone data used in this study are collected from a single phone company. As a city
usually includes multiple phone companies, it is necessary to compare whether the
relationships between the cellphone usage level and the distribution of mobile
phone subscribers are similar across different cellular networks. How to integrate
population estimates from multiple cellular networks in order to gain a more
compressive view of urban population distribution is of great importance to
applications in emergency response, public health, transport planning, among
others.

This research examines only the spatiotemporal relationships between the
aggregate cellphone usage and the phone user distributions on a weekday. How
their relationships vary between weekdays and weekends, and how such relation-
ships are influenced by special events are not examined in this study. Also, how the
spatiotemporal resolutions (e.g., size of grid cell, length of time window) would
influence the prediction accuracy is worth a further investigation. Future work can
focus on these issues and combine other data sources (e.g., land use type and POI)
with CDRs to deliver more robust estimations of mobile phone users and dynamic
urban population distributions. Findings of this study provide some useful infor-
mation and guidelines of using large-scale mobile phone data for geographical
studies and urban dynamics research.
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