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A B S T R A C T

Recently, some studies have shown that human movement patterns are strongly associated with regional so-
cioeconomic indicators such as per capita income and poverty rate. These studies, however, are limited in
numbers and they have not reached a consensus on what indicators or how effectively they can possibly be used
to reflect the socioeconomic characteristics of the underlying populations. In this study, we propose an analytical
framework — by coupling large scale mobile phone and urban socioeconomic datasets — to better understand
human mobility patterns and their relationships with travelers' socioeconomic status (SES). Six mobility in-
dicators, which include radius of gyration, number of activity locations, activity entropy, travel diversity, k-
radius of gyration, and unicity, are derived to quantify important aspects of mobile phone users' mobility
characteristics. A data fusion approach is proposed to approximate, at an aggregate level, the SES of mobile
phone users. Using Singapore and Boston as case studies, we compare the statistical properties of the six mobility
indicators in the two cities and analyze how they vary across socioeconomic classes. The results provide a
multifaceted view of the relationships between mobility and SES. Specifically, it is found that phone user groups
that are generally richer tend to travel shorter in Singapore but longer in Boston. One of the potential reasons, as
suggested by our analysis, is that the rich neighborhoods in the two cities are respectively central and peripheral.
For three other mobility indicators that reflect the diversity of individual travel and activity patterns (i.e.,
number of activity locations, activity entropy, and travel diversity), we find that for both cities, phone users
across different socioeconomic classes exhibit very similar characteristics. This indicates that wealth level, at
least in Singapore and Boston, is not a factor that restricts how people travel around in the city. In sum, our
comparative analysis suggests that the relationship between mobility and SES could vary among cities, and such
relationship is influenced by the spatial arrangement of housing, employment opportunities, and human ac-
tivities.

1. Introduction

The last decade has witnessed an explosive growth of scientific re-
search that characterizes and models how people move around in space
and time. The interdisciplinary field — broadly conceived as human
mobility analysis — has attracted researchers across various back-
grounds to tackle questions in epidemiology (Bengtsson, Lu, Thorson,
Garfield, & Von Schreeb, 2011), sociology (Lazer et al., 2009) and
urban planning (Alexander, Jiang, Murga, & González, 2015), among
others. With rapid developments of information and location-aware
technologies, researchers nowadays have access to large datasets of
different types (e. g., mobile phone records, social media data, public

transit records). This allows for acquisition of new knowledge about
important aspects of human mobility patterns (De Montjoye, Hidalgo,
Verleysen, & Blondel, 2013; Gonzalez, Hidalgo, & Barabasi, 2008; Song,
Qu, Blumm, & Barabási, 2010).

Despite the numerous insights uncovered by recent human mobility
research, there have been limited studies — especially the ones lever-
aging new and emerging data sources — that analyze the relationships
between movement patterns and socioeconomic characteristics of the
travelers. This is partially due to a lack of multimodal data that could
reveal both travel behavior and socioeconomic status (SES) of the same
population. An improved understanding of the relationship between
mobility and SES is very important for many scientific domains and
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real-world applications, especially the ones that call for human-cen-
tered approaches. For example, knowing how travel patterns vary
across social classes could help decision makers to control spread of
infectious diseases more effectively by targeting the right population
groups (Finger et al., 2016), or improve the performance of transpor-
tation systems by providing customized mobility solutions to travelers
(Alsnih & Hensher, 2003). It can also shed light on many societal issues
such as spatial inequality and social stratification (Echenique & Fryer,
2007; Leo, Fleury, Alvarez-Hamelin, Sarraute, & Karsai, 2016).

Recently, some studies have shown that human mobility patterns
are strongly associated with regional socioeconomic indicators such as
per capita income and poverty rate (Almaatouq, Prieto-Castrillo, &
Pentland, 2016; Frias-Martinez, Soguero-Ruiz, Frias-Martinez, &
Josephidou, 2013; Pappalardo, Pedreschi, Smoreda, & Giannotti,
2015). However, these studies are limited in numbers and they have not
reached a consensus on what indicators or how effectively they can
possibly be used to reflect the socioeconomic characteristics of the
underlying populations. Hence, this research proposes an analytical
framework — by coupling large scale mobile phone and urban socio-
economic datasets — to better understand human mobility patterns and
their relationships with travelers' socioeconomic status. Using Singa-
pore and Boston as case studies, this work aims to answer one important
research question: How do people belonging to different social classes
move around in a city, and whether they use urban spaces in different
ways?

By analyzing large scale mobile phone data in Singapore and Boston,
we introduce six indicators — which are (1) radius of gyration, (2)
number of activity locations, (3) activity entropy, (4) travel diversity, (5)
k-radius of gyration, and (6) unicity — to quantify important aspects of
phone users' mobility characteristics. Among these indicators, radius of
gyration and the entropy-based measures (e.g., activity entropy and
travel diversity) have been widely used in existing studies to quantify
two salient dimensions of human mobility patterns (Gonzalez et al.,
2008; Pappalardo et al., 2015; Song, Koren, Wang, & Barabási, 2010;
Song et al., 2010), namely, the spatial dispersion and predictability of in-
dividual movements. K-radius of gyration and unicity are two measures
that were proposed more recently to quantify individual movements
among the most frequented locations (Pappalardo, Simini, Rinzivillo,
Pedreschi, Giannotti, & Barabási, 2015) and the uniqueness of an in-
dividual's activity patterns relative to others (De Montjoye et al., 2013).
These six mobility indicators, which have gained considerable attention
in human mobility research, can either be derived from raw mobile
phone data or meaningful location sequences extracted from mobile
phone users' trajectories. They capture a comprehensive picture of phone
users' travel behavior, such as the spatial extent of activity space (radius
of gyration and k-radius of gyration), the regularity of daily activities
(number of activity locations and activity entropy), the diversity of
movements among important activity locations (travel diversity), and
the re-identifiability of mobility traces (unicity).

By further incorporating several socioeconomic datasets — (1) the
sale price of residential properties and household interview travel
survey in Singapore, and (2) per capita income estimated at census tract
level in Boston — we propose a data fusion approach to approximate, at
an aggregate level, the socioeconomic status (SES) of mobile phone
users. We then compare the statistical properties of the six mobility
indicators in the two cities, and analyze their relationships with the
phone users' SES. The comparative analysis reveals the socioeconomic
dimensions of human mobility, and suggests whether there exist uni-
versal patterns across the cities.

The remainder of this article is organized as follows. Section 2
provides an overview of related work of this research. Section 3 in-
troduces the study areas as well as the mobile phone and socioeconomic
datasets. In Section 4, we introduce how the mobility indicators are
derived and the data fusion approach for approximating phone users'
SES. We then present analysis results in Section 5. Finally, in Section 6,
we conclude our findings and discuss future research directions.

2. Literature review

2.1. Dimensions of human mobility

Human mobility analysis is an interdisciplinary field that aims to
understand the intrinsic properties of human movements as well as the
mechanisms behind the observed patterns. The concept of human mo-
bility is broad in a sense that it encompasses various dimensions of
human travel at both individual and group levels. The conceptualiza-
tion and representation of human mobility also vary depending on the
contexts of studies and backgrounds of researchers. One important
concept that is widely used in geographical and urban studies is activity
space. Namely, it denotes the daily environment that an individual is
using for his or her activities (Golledge & Stimson, 1997). It is usually
conceptualized as the set of locations that a particular person has vis-
ited as well as his/her travels among those locations (Schönfelder &
Axhausen, 2003). Previous studies have employed various activity
space measures, such as standard deviational ellipse (Lefever, 1926;
Zehavi, 1981), confidence ellipse and minimum spanning trees
(Schönfelder & Axhausen, 2004, 2003), and space-time prisms (Kim &
Kwan, 2003; Miller, 2005), to better understand people's travel and
daily activity patterns. The activity space measures mainly focus on
quantifying a person's mobility patterns from three perspectives: (1) the
spatial extent of daily activities, (2) one's frequented activity locations
(i.e., activity “anchor” points), and (3) movements between those lo-
cations (Schönfelder & Axhausen, 2003). They collectively form a
geographic representation of individual human mobility, and have been
widely used to study household travel behavior (Dijst, 1999; Newsome,
Walcott, & Smith, 1998) and individual accessibility to urban facilities
(Kwan, Murray, O’Kelly, & Tiefelsdorf, 2003; Sherman, Spencer,
Preisser, Gesler, & Arcury, 2005).

Recent advancements in information and location-aware technolo-
gies have produced many new datasets (e.g., mobile phone records and
social media data) that capture the whereabouts of people in space and
time. These new datasets have empowered researchers from a wide
range of fields, such as computer science, statistical physics, and
transportation engineering, to characterize and model individual mo-
bility for large populations. Using a six-month cellphone trajectories of
100,000 users, Gonzalez et al. found that individual travel distance (i.e.,
displacement) can be approximated by a truncated power-law and that
people tend to return to a few highly frequented locations (Gonzalez
et al., 2008). By analyzing a three-month mobile phone trajectories of
50,000 users, Song et al. found that human travel patterns are highly
predictable and there is a remarkable lack of variability (in predict-
ability) across the population (Song et al., 2010). In another research
(Song et al., 2010), which was also based on mobile phone data, the
authors developed a microscopic model (exploration and preferential
return) that is able to reproduce many intrinsic properties (e.g., jump
size, visitation probability) of human travel behavior. By applying ei-
gendecomposition to the MIT Reality Mining dataset, researchers were
able to reconstruct and predict an individual's travel behavior with a
high accuracy based on the principle components of his or her activity
diary (Eagle & Pentland, 2009). Several important indicators — such as
radius of gyration and entropy-based measures — have been used in
these studies to capture the spatial dispersion and regularities of human
mobility, respectively (Gonzalez et al., 2008; Song et al., 2010; Song
et al., 2010). These studies mark a new wave of scientific efforts to
uncover the hidden mechanisms that govern individual movements.

Another strand of research focuses more on analyzing collective
human behavior and space-time structures of cities. Topics include, but
are not limited to, visual analytics of cellular usage (Calabrese,
Colonna, Lovisolo, Parata, & Ratti, 2011; Ratti, Frenchman, Pulselli, &
Williams, 2006), community detection in urban population flow (Belyi
et al., 2017; Nelson & Rae, 2016), and quantification of urban spatial
structures (Louail et al., 2014; Roth, Kang, Batty, & Barthélemy, 2011).
Some studies have also taken advantage of big urban datasets to
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compare human mobility patterns across cities. For instance, by ana-
lyzing mobile phone data in three major US metropolitan areas (Los
Angeles, San Francisco and New York), researchers observed notable
differences in people's travel ranges among the three cities (Becker
et al., 2013). Similarly, based on three mobility indicators (daily ac-
tivity range, number of activity anchor points, and frequency of
movements) extracted from large scale mobile phone data, Xu et al.
(2016) performed a comparative analysis of human travel patterns in
two metropolitan regions in China (Shenzhen and Shanghai). These
studies highlighted the unique properties of human movements in each
city that are potentially shaped by the urban spatial structure and so-
ciodemographic characteristics.

In transportation planning and modeling, human mobility is often
linked to concepts such as activity locations, origin-destination (OD)
matrices, individual trip making, and commuting patterns. Studies in
this field mainly focus on identifying and modeling human travels
among important activity locations (e.g., home, work place, shops and
restaurants). For example, some recent studies have shown that mobile
Call Detail Records (CDRs) have the potential of complementing or
even substituting traditional surveys in addressing questions such as OD
estimation (Alexander et al., 2015; Iqbal, Choudhury, Wang, &
González, 2014) and travel demand modeling (Jiang, Ferreira, &
Gonzales, 2016; Jiang, Yang, Gupta, Veneziano, Athavale, & González,
2016). Although the approaches used for studying human mobility vary
across disciplines (e.g., geography, urban planning, transportation en-
gineering, and network science), there seem to be a lot of overlapping
interests, such as quantifying the spatial extent of individual activity
space, understanding individual travels among important activity “an-
chor” points, and uncovering the inherent regularities in human
movements.

2.2. Human mobility and sociodemographic characteristics

Socioeconomic status (SES) and demographic characteristics are
important factors that shape individual travel behavior. Before in-
formation and communication technologies (ICTs) proliferated, travel
surveys had been used as the most reliable data source for assessing and
comparing human travel behaviors across social classes and demo-
graphic tiers (Hanson, 1982; Hanson & Hanson, 1980, 1981; Kwan,
1999; Limtanakool, Dijst, & Schwanen, 2006). In these studies, the
differences in people's gender, race or ethnicity were found to be cor-
related with their daily activities and movement patterns. In particular,
some studies have observed notable differences in the travel-activity
patterns of men and women (Hanson & Hanson, 1980; Kwan, 1999).
They suggested that “women encounter higher levels of daytime fixity
constraint” [Kwan, 1999, p. 370], while working men “frequented re-
creation places and workplaces more often than did the women”
[Hanson & Hanson, 1980, p. 298]. On the other hand, it is found that
socioeconomic status is related to an individual's daily travel patterns.
As suggested by Hanson and Hanson (1981), an individual's travel
frequency is positively correlated with employment status, and income
has a positive impact on the spatial dispersion of destinations visited.
Another interesting finding from the same study is that education level,
which also describes a person's SES, is negatively associated with travel
range. The study observed an intertwined relationship between SES and
individual travel behavior. Despite the great contributions of these
studies, one issue is that collecting travel surveys is usually costly and
time-consuming. The difficulties in data collection limited the scope of
the studies, which usually focused on investigating a small size of
participants during a short-period of time. Such difficulties also pose
additional challenges to performing comparative analysis across areas
with different social-cultural characteristics (i.e., inter-city compar-
isons).

In recent years, mobile phone data have become a new data source
for studying the social aspects of human mobility (Xu, Belyi, Bojic, &
Ratti, 2017). For example, by analyzing mobile phone trajectories of

two linguistic groups in Tallinn, Estonia, the authors found that eth-
nicity has a significant influence on the activity spaces of individuals
(Järv, Müürisepp, Ahas, Derudder, & Witlox, 2015; Silm & Ahas, 2014).
Using a CDR dataset collected in Shenzhen, China (Xu et al., 2015), the
authors proposed a home-based approach to analyze how people's daily
activities take place around their home locations, and the results re-
vealed a ‘north-south’ contrast of human activity space that is in general
agreement with the socioeconomic divide in the city. In these studies,
sociodemographic characteristics of phone users are implicitly con-
sidered or approximated using certain variables (e.g., linguistic back-
ground). However, there is still a remarkable lack of research that
would reveal the relationship between movement patterns and socio-
economic characteristics of the travelers. This is partially due to the
difficulty of coupling large individual tracking datasets with SES. One
approach usually adopted is to associate individual home location to
census tract, where aggregate characteristics of SES (e.g., mean/median
household income) are available (Huang & Wong, 2016).

The associations between travel behavior and SES revealed by
previous studies also spurred a collection of research that aimed at
predicting socioeconomic levels based on human mobility datasets. For
example, some recent studies found that mobile phone data can be used
to predict individual SES (Blumenstock, Cadamuro, & On, 2015) and
regional socioeconomic characteristics such as poverty and wealth le-
vels (Šćepanović, Mishkovski, Hui, Nurminen, & Ylä-Jääski, 2015;
Smith-Clarke, Mashhadi, & Capra, 2014; Soto, Frias-Martinez, Virseda,
& Frias-Martinez, 2011). In these studies, mobility indicators of phone
users are used along with other variables, such as calling patterns and
social network structures. The prediction methods (e.g., regression,
SVM, and random forest) as well as the social-cultural characteristics of
areas studied also varied. In other words, whether there exists any
universal relationship between mobility and SES remains to be better
understood.

3. Study area and datasets

3.1. Mobile phone data

In this research, two mobile phone datasets collected in Singapore
and Boston Metropolitan Area are used to derive phone users' mobility
indicators. The Singapore dataset covers 4.4 million cellphone users
during a period of 50 days in 2011. Each mobile phone record tracks the
unique ID of the phone user, the communication type (call/SMS), as
well as the date, time and the user's location when the phone com-
munication started. The location of each record was reported as the
latitude/longitude of the phone user's connected cellphone tower.
There are about 5000 cellphone towers that are densely distributed
across the whole Singapore, and the average nearest distance between
them is about 100m. On the other hand, Boston dataset contains lo-
cation estimations of about one million anonymous mobile phone users.
It was collected by AirSage (http://www.airsage.com) during four
months in 2009. In this dataset, location information is generated each
time a phone user engages in calling, messaging, or web browsing ac-
tivities (we refer to all these activities as ‘calls' in the following text). In
contrast to the Singapore dataset, which explicitly provides phone
users' locations at the cellphone tower level, the Boston dataset reports
location estimations obtained through triangulation technology. The
uncertainty range of the estimations has a mean of 320m and a median
of 200m. More detailed information about this dataset can be found in
Calabrese, Diao, Di~Lorenzo, Ferreira, and Ratti (2013).

To control the issue of data sparsity and in order to take into ac-
count that the two datasets were passively generated during certain
types of mobile phone activities, this research focuses on the cellphone
users, who were active (i.e., have at least one record in the dataset) at
least half of the days during the given data collection period.
Specifically, the subset of Singapore dataset consists of phone users
with at least 25 active days of phone usage, as compared to those of 60
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active days for the Boston dataset. This allows us to mitigate the data
sparsity issue by filtering individuals: (1) who are short-term sub-
scribers and/or (2) who have inactive phone usage during the study
period. For example, the average number of active hours (i.e., number
of one hour time slots with at least one call) per active day increased
from 4 to 6 in both datasets, and average number of calls per active day
increased from 17 to 25 in Singapore and from 31 to 47 in Boston. At
the same time, average time between calls on active days also increased
from 63 to 73 and from 27 to 31min for the Singapore and Boston
datasets respectively, indicating that phone calls of short-term sub-
scribers are more concentrated in time, i.e., bursty. The resulting da-
tasets after this filtering consist of 2.1 and 0.5 million phone users in
Singapore and Boston, respectively. Detailed plots with distributions of
time-related characteristics of the data could be found in Appendix A.

3.2. Socioeconomic data

In this research, two different types of socioeconomic data are used
to reflect the SES of the mobile phone users in Singapore and Boston.
For the case of Singapore, we use a housing price dataset acquired from
a private company (https://www.99.co), which is one of the two largest
companies in the country that provide map-based search for a com-
prehensive coverage of housing properties.1 The dataset used in this
research includes information of thousands of residential properties
across the country collected between 2011 and 2012. Each record
corresponds to a unique housing property in geographic space, with
information such as its property type (i.e., condo, landed, or HDB2), the
geographic coordinates (i.e., latitude and longitude), and the total sale
price of one housing unit.

The housing price dataset is used as a proxy for mobile phone users'
SES. Basically, we hypothesize that people who live in areas with a
higher average housing price tend to be richer in general. To support
the usage of this dataset, we incorporate another dataset — the
Household Interview Travel Survey (HITS) — collected by the
Singapore Land Transport Authority (LTA) in 2012. The Singapore
2012 HITS collects 1-day travel diary of 35,715 individuals (sampling
rate of about 1%) along with other sociodemographic attributes — such
as monthly income — self-reported by the respondents. To understand
the correlation between the housing price and monthly income re-
corded by HITS, we extract all the individuals in the HITS data who
reported their income (12,111 in total). We then aggregate these in-
dividuals — based on the postal code of their residencies— by planning
areas (as shown in Fig. 1A), and calculate the average value of monthly
income for individuals in each planning area. Similarly, we compute the
average sale price of housing units for each planning area and explore
the relationship between the two variables. As illustrated in Fig. 1B, the
average housing price matches relatively well with the income level at
the corresponding planning area except for 3 outliers (i.e., Novena,
Sungei Kadut, and Southern Islands). We think this is partially caused
by the sampling bias. For example, we find that only two individuals are
sampled from the Southern Islands, a planning area where several
luxury housing communities locate. Both of them reported a monthly
income of 500 SGD. Fig. 1C shows the relationship between the two
variables after filtering these three outliers. The Pearson's correlation is
0.88, which suggests that housing price is a strong indicator of the re-
sidents' SES.

Note that we use housing price data instead of HITS because only a
limited number of individuals are sampled from HITS, which provide
sporadic observations about people's SES. The housing price data,
however, enable us to capture the heterogeneity of mobile phone users'

SES at a finer spatial granularity. Specifically, the mobile phone users'
SES can be approximated at the level of cellphone tower service areas,
which have a much finer spatial resolution than the planning areas.
Details on how mobile phone users and socioeconomic variables are
associated will be described in Section 4.4.

For the case of Boston, we use per capita income estimated at the
census tract level (Fig. 1D) as a proxy of phone users' SES. The data,
which is included in the 2010 American Community Survey (ACS), is
publicly available and can be downloaded through the American
FactFinder (https://factfinder.census.gov/faces/nav/jsf/pages/index.
xhtml) provided by the United States Census Bureau. Specifically, we
define the geographic type as census tract, and then choose the dataset
as 2010 ACS 5-year estimates. The dataset includes one table that
provides per capita income estimated for the past 12months.

4. Methodology

In this section, we introduce the methods for deriving mobility in-
dicators as well as how we approximate phone users' socioeconomic
status (SES). Fig. 2 illustrates the overall research design. First, we
derive a collection of indicators to quantify important aspects of phone
users' mobility characteristics. The first indicator, radius of gyration, is
derived from the raw mobile phone data to describe the typical range of
user's activity territory. The indicator has been widely used in previous
studies (Gonzalez et al., 2008; Song et al., 2010) to quantify the spatial
dispersion of a phone user's daily activities. When calculating this in-
dicator, previous studies often consider cellphone towers visited by a
phone user as independent locations, and the total number of records
generated at each tower indicates its importance to the user. Since ra-
dius of gyration is calculated from the raw data, we refer to it as a low
level mobility indicator (LMI) in this research.

However, there are several issues with LMI. One issue is that an
individual's reported locations depend on the cellphone tower he/she is
connected to. Moreover, this connection could switch between different
cellphone towers due to signal jump or load balancing (Csáji et al.,
2013). That means mobile phone observations might not reflect a
phone user's real locations. Also, the intensity of a phone user's com-
munication activities at a particular location is only one way of mea-
suring the location's importance. Other properties, such as duration of
stay, are also essential to the understanding of phone users' travel be-
havior. To obtain a behaviorally more realistic measure of individual
mobility, we apply a trajectory segmentation method to process raw
data of each user into a meaningful location sequence, from which a set
of high-level mobility indicators (HMIs) is derived. The methodologies for
deriving HMIs and what properties of individual mobility each HMI
could capture will be introduced in Section 4.3.

Next, we associate mobile phone users — based on their estimated
home locations — to spatial units (i.e., cellphone tower service areas for
Singapore and census tracts for Boston) where socioeconomic variables
are available. The socioeconomic variables are used to reflect, at an
aggregate level, the SES of mobile phone users. The mobility indicators
and SES of mobile phone users are then analyzed to better understand
how people belonging to different social classes move around in the two
cities.

4.1. Radius of gyration as a low level indicator (LMI)

Given a cellphone user's observations as a list of tuples
…l t l t l t{( , ), ( , ), , ( , )}n n1 1 2 2 , where li and ti denote the location and the time

of the ith observation, the radius of gyration, Rg, is defined as follows:

⃗ ⃗
=

∑ −
=R

l l
n

( )
.g

i
n

i c1
2

(1)

Here, ⃗li denotes the location vector (i.e., x,y coordinates) of li, and⃗ ⃗= ∑l l n/c i refers to the center of mass. Rg can be used to measure the

1 The other one is Property Guru (https://www.propertyguru.com.sg/).
2 HDB, which is short for Housing Development Board, is a type of residential housing

property that is publicly governed and developed in Singapore. The HDB flats were built
primarily to provide affordable housing.
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spatial dispersion of a phone user's daily activities. A large value of Rg

usually indicates a large activity space, while a small value suggests
that the phone user's daily activities mainly concentrated in a small
geographic area.

4.2. Trajectory segmentation and stay location extraction

The purpose of trajectory segmentation is to obtain a behaviorally
more realistic representation of a phone user's movements over time.
Due to the sparsity of the mobile phone data used in this research, it is
rather challenging to extract meaningful activity sequences — such as
location and duration of stays — for phone users who have very few
records in a day. Hence, it is necessary to filter users and observation

days with few mobile phone records. In this research, we adopt the
methods and workflow from Alexander et al. (2015) and Jiang,
Ferreira, and Gonzales (2016) to perform the trajectory segmentation.
First, by dividing a day into 24 one-hour time windows, we calculate,
for each phone user, the number of active time windows (e.g., ones with
call observations) for each day. We refer to the days where the total
number of active time windows is equal or greater than a threshold (set
to 8 in this research) as active observation days (Jiang, Ferreira, &
Gonzales, 2016). For each phone user, only active observation days are
used for the trajectory segmentation.

Let ′ ′ ′ ′ … ′ ′′ ′l t l t l t{( , ), ( , ), , ( , )}n n1 1 2 2 denote a phone user's records on the
active observation days. We compare each record with its subsequent
observation, and we merge them into a segment if they are within a

(A) (D)

)C()B(

Southern Islands
Sungei Kadut

Novena

Fig. 1. (A) The planning areas of Singapore; (B) The relationship between average housing price and average monthly income computed at the planning area level;
(C) The correlation between the two variables after removing three outliers (Pearson's r=0.88); (D) The census tracts in the metropolitan Boston area.
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Fig. 2. In this research, we derive a collection of indicators to quantify important aspects of phone users' mobility characteristics. We then examine the relationship
between mobility characteristics and SES of mobile phone users.
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roaming distance Δd1. We then calculate the medoid (or mean center)3

of the segment, which is then compared with the next observation. We
iteratively add an observation into the segment if its location and the
medoid (or mean center) is within Δd1. Otherwise, a new segment is
created.

Iterating through ′ ′ ′ ′ … ′ ′′ ′l t l t l t{( , ), ( , ), , ( , )}n n1 1 2 2 based on the described
above process results in a sequence ″ ″ …m t dur m t dur{( , , ), ( , , ), ,1 1 1 2 2 2

″″ ″ ″m t dur( , , )}n n n , where mi, ti″, and duri denote the medoid (or mean
center), starting time, and the stay duration of the ith segment, re-
spectively. Then, we further cluster the medoids or mean centers (mi)
with duri>0 that are within a roaming distance Δd2. The purpose is to
merge the stay segments that are close to each other in geographic
space. Finally, we keep the segments which duration is greater than a
threshold Δt. The final location sequence for a phone user is denoted as

…s t dur s t dur s t dur{( , , ), ( , , ), , ( , , )}n n n1 1 1 2 2 2 .
Considering the average spacing gap of cellphone towers in

Singapore (i.e., 100m) and the median range of location uncertainty in
the Boston dataset (i.e., 200m), we set both Δd1 and Δd2 to 300m, and
Δt was set to 10min.4 Fig. 3 shows an example of the cellphone towers
that were visited by a randomly selected user in the Singapore dataset
during the whole data collection period (384 towers in total, see
Fig. 3A) as well as on the active observation days (366 towers in total,
see Fig. 3B). By performing the trajectory segmentation and keeping the
stay segments with duration above Δt, we successfully extracted 35 stay
locations for this user (see Fig. 3C).

4.3. High-level mobility indicators (HMIs)

Given cellphone user's stay segments …s t dur s t dur{( , , ), ( , , ), ,1 1 1 2 2 2

s t dur( , , )}n n n , we derive the following five indicators:

• A: total number of activity locations

• H1: activity entropy

• H2: travel diversity

• Rg
k( ): k-radius of gyration

• U: unicity

The first high-level indicator, A, measures the total number of ac-
tivity locations visited by a phone user during the data collection
period:

= …A set s s s| ( , , , )|.n1 2 (2)

A large value of A indicates that phone users' activities are distributed
across a variety of locations during the study period.

Given a vector {p1, p2, …, pA}, where =
∑

∑

=

=
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dur

dur

sj si j

j
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j1
denotes the

proportion of duration of stay at location si, the activity entropy is
calculated as:

∑= −
=
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i

A

i i1
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Note that ∑ =p 1i . Since the locations in …set s s s( , , , )n1 2 are weighted
by the (observed) duration of stay rather than the number of mobile
phone records (e.g., calls/SMS), the measure is less sensitive to phone
users' calling behavior and the ‘bursty’ nature of human communication
activities (Barabási, 2010). From a spatial point of view, a large value of
H1 suggests that the diversity of a phone user's daily activities is high.

The travel diversity, H2, measures the regularity of a phone user's
movements among his/her activity locations. Given a phone user's stay
segments …s t dur s t dur s t dur{( , , ), ( , , ), , ( , , )}n n n1 1 1 2 2 2 , we define origin-
destination trips as movements between consecutive stay locations. Let
E denote all the possible origin-destination pairs (without considering
direction) extracted from this phone user's activity locations (i.e.,

…set s s s( , , , )n1 2 ), the travel diversity is measured as:

∑= − ′ ′
∈

H p plog( )
i E

i i2
(4)

where pi′ is the probability of observing a movement between the ith
origin-destination pair. Note that∑ ′ =p 1i . A large value of H2 indicates
that a phone user's trips distribute across a variety of origins and des-
tinations.

K-radius of gyration, Rg
k( ), is a radius of gyration calculated using

only k the most visited places. It was proposed by Pappalardo et al.
(2015) to measure to what extent the most important locations de-
termine a user's radius of gyration. A precise definition of ‘the most
visited place’ could vary depending on a context. We define it as a place
where a user spent the longest time, i.e., a place with the longest total
duration of stay. So in our case, a formulae for Rg

k( ) takes the form:

⃗ ⃗
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where si, =i k1, , are k locations with the longest total duration of stay,

and
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is the center of mass of these k locations. By using

only stay locations from aggregated trajectory, we try to avoid cases
when some of the most visited locations are actually one location and
apparent split is caused by switching between cell towers. For example,
we expect home and work to be the two places where most users spend
the longest time. Then, 2-radius of gyration measures user's activity
space between these two places. If it is small compared to total radius of
gyration, then those two places play a less important role in person's
mobility habits. In addition, if it is on par with the overall radius of
gyration, then those two places completely explain person's traveling
behavior. Using k-radius of gyration, we can divide users into two

Fig. 3. (A) Cellphone towers (red) visited by a randomly selected user during the data collection period; (B) Towers (orange) that are visited by the same user on
active observation days; (C) The extracted stay locations (blue) on active observation days. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3 Since the locations in the Singapore dataset are reported explicitly at the cellphone
tower level, we use medoid to represent the location of the stay segment. However, as the
location information in the Boston dataset is generated based on triangulation tech-
nology, in this case we use mean center.

4 Refer to Alexander et al. (2015) and Jiang, Ferreira, and Gonzales (2016) for further
information on the method.
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categories: returners and explorers. This notion was also originally
proposed by Pappalardo et al. (2015). As authors suggested in their
study, k-returners are those for whom ≥R R /2g

k
g

( ) and k-explorers are
those for whom <R R /2g

k
g

( ) . Intuitively, k-returners are those who tend
to spend most of the time between k the most important locations,
while k-explorers are those who's activity space cannot be well de-
scribed by only k top locations.

Our unicity measure, inspired by De Montjoye et al. (2013), esti-
mates the number of top locations needed to uniquely identify a par-
ticular person. The fewer points needed, the more unique the person is,
meaning that it is easier to re-identify him/her using outside informa-
tion about top locations he/she visited. Since collected locations in the
Boston and Singapore datasets were not at the same spatial resolution
(i.e., in Singapore they were on a cellphone tower level, while Boston
dataset reported locations that were determined using a triangulation
method), we decide to perform the analysis at the level of grid cells.
Specifically, considering the uncertainty range of mobile positioning in
the two cities (100m for Singapore and 200m for Boston), we divide
the study areas into regular grid cells using two different spatial re-
solutions (500m and 1 km). 1 km grid is used to examine how a coarser
spatial resolution affects the unicity results. We then map each user's
stay locations onto the grid cells and evaluate his/her re-identifiability.

Given a phone user's stay segments as …s t dur s t dur{( , , ), ( , , ), ,1 1 1 2 2 2

s t dur( , , )}n n n , we map them onto the grid cells {g1,g2,…, gz} and cal-
culate the total duration that the user stayed at each grid cell (i.e., ∀i
where si ∈ gz→ ∑ duri). After this step, we order all the grid cells visited
by the phone user in descending order of stay duration. The top l lo-
cations are defined as the first l locations in this ordered list. After
deriving these locations for all the users, we examine the re-identifia-
bility of the users by analyzing the uniqueness of their top l locations. In
particular, we introduce the concept of unicity, Ul, as the percentage of
mobile phone users who can be uniquely identified using the top l lo-
cations:

=U
number of phone users with unique top l locations

total number of phone users in a city
.l

(6)

It is important to note that we are building a set of top l visited loca-
tions, which means that the order does not matter. For example, if for a
given user the first most visited location is g5 followed by g2 and for
another user his/her top two locations are g2 and g5, in the case when
l=2, those two users would not be considered as unique ones. Finally,
we explore the relationship between Ul and SES of phone users. The
research question we pose here is: Is a lower socioeconomic status a
limiting factor for people to be more unique? Meaning if richer people

are more privileged to visit more different places and consequently be
more unique.

4.4. Home location detection and association with socioeconomic variables

To establish a link between mobile phone users and SES, one ap-
proach usually adopted in existing studies is to associate individuals —
based on their residential locations — to spatial units where socio-
economic variables are available. In this research, we use a similar
approach. Specifically, we estimate each phone user's home location,
which is then associated with a value derived from the corresponding
socioeconomic variable (e.g., average housing price and per capita in-
come).

There have been many studies which discuss how home locations
can be inferred from mobile phone data (Ahas, Silm, Järv, Saluveer, &
Tiru, 2010; Bojic, Massaro, Belyi, Sobolevsky, & Ratti, 2015; Isaacman
et al., 2011; Xu et al., 2017, 2015). For the Singapore dataset, we es-
timate each individual's home location as the most used cellphone
tower before 06:00 and after 19:00. We then generate Voronoi polygons
based on the spatial distribution of the cellphone towers to approximate
their service areas. For each cellphone tower service area, we then
extract all the housing properties (i.e., condo, landed or HDB) that fall
inside, and then we calculate the average value of unit sale price of all
these properties, which is then used to represent the housing price level
at the corresponding cellphone tower service area. On average, we have
24.5 housing properties in each cellphone tower service area to calcu-
late the average sale price (median is 12, 25th and 75th percentiles are
6 and 23, respectively; readers could refer to Fig. B.3 in the Appendix B
for detailed information). Finally, each phone user is associated with a
housing price value based on the service area of his/her home tower.

To ensure that our approach captures the heterogeneity of the
housing price in Singapore, we calculate the standard deviation of unit
sale price within each cellphone tower service area (i.e., within-cell
std), and compare that with the overall standard deviation (i.e., overall
std). As illustrated in Fig. 4A, a large proportion of cellphone tower
service areas have a small ratio between within-cell std and overall std.
The median value is 0.16. That means the cellphone tower service areas
(i.e., Voronoi polygons), to a large extent, capture the heterogeneity of
the residential housing price in Singapore. Fig. 4B shows the percentage
of mobile phone users that are associated with different housing price
values. The distribution is highly skewed to the right, indicating that a
limited proportion of people live in expensive neighborhoods.

Since the mobile phone locations in the Boston dataset are not
provided at the cellphone tower level, we use a different home location

Fig. 4. (A) Histogram of the ratio between within-cell standard deviation and overall deviation of housing price at the level of cellphone tower service areas; (B)
Percentage of phone users that are associated with a particular housing price value in Singapore (C) Percentage of phone users that are associated with a particular
per capita income value in Boston.
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estimation method. Specifically, given a phone user's stay locations as
…set s s s( , , , )n1 2 , we calculate, for each location, the total number of

mobile phone records before 06:00 and after 19:00 during the entire
data collection period. The location with the highest frequency (i.e., the
most used location) is estimated as the phone user's home. Similar to
what we perform on the Singapore dataset, each phone user is asso-
ciated with the per capita income value of his/her home census tract.
Fig. 4C shows the histogram of phone users that are associated with
different income values, which generally follows a symmetric dis-
tribution.

5. Analysis results

In this section, we present our findings — by comparing Singapore
and Boston — on the properties of the derived mobility indicators (LMI
& HMIs) and their relationships with phone users' SES.

5.1. Radius of gyration and user class definition

We first examine the relationships between radius of gyration (Rg)
and SES of phone users in the two cities. Since mobile phone users are
associated with different housing price or income values, to distinguish
their SES, we use a social stratum model (Leo et al., 2016) to group
them into different classes. Note that these classes are only used to
reflect group-level characteristics, and they do not represent individual
socioeconomic status. Specifically, for each city, we sort mobile phone
users in ascending order based on their associated socioeconomic va-
lues v. By calculating the cumulative sum of v, the model groups mobile
phone users into q classes such that the sum of socioeconomic values in
each user class is the same (i.e., equal to ∑ v q( )/ ). Compared to quantile
classification from which each class gets an equal size, the social
stratum model partitions individuals into classes with decreasing sizes,
such that the differences of SES among classes can be distinguished
more effectively (i.e., richer groups have smaller sizes).

Fig. 5 illustrates the relationships between Rg and SES of mobile
phone users in the two cities. Here, we use q=20 as an example. As
illustrated in Fig. 5A, the Rg of phone users in Singapore generally
follows a normal distribution. By investigating their relationship with
SES, as shown in Fig. 5B, we find that user groups living in richer areas
tend to have a smaller Rg on average, with Spearman correlation
coefficient between housing price and radius of gyration of − 0.10 (p-
value less than 10−6). By examining the geographic patterns of housing
prices in Singapore, it is found that many expensive and luxury re-
sidential communities locate in planning areas such as Bukit Timah,
Tanglin, River Valley, and Marine Parade (see Fig. 6A). These areas sit
relatively close to the downtown core, the central business district (CBD)
of Singapore. People who live in these planning areas tend to have
better access to the various job opportunities provided by the CBD.
Moreover, many retail and entertainment hubs (e.g., Orchard Road and

Sentosa Island) are also highly accessible from these planning areas.
That means people who live in these rich areas were able to perform
different types of daily activities (e.g., working and recreational) within
a short travel range. Furthermore, by computing phone users' radius of
gyration on weekdays and weekends separately (i.e., Rg(weekdays) and
Rg(weekends)), we find that their relationships with SES are consistent with
Fig. 5B, indicating a shorter travel range for richer groups on both
weekdays and weekends (see Appendix C).

For the case of Boston, the distribution of phone users' Rg is highly
skewed to the right (Fig. 5C). It starts to resemble closer power-law
distributions observed in other studies (Gonzalez et al., 2008;
Pappalardo et al., 2015) where much larger county-level coverage areas
were analyzed. The reason for this is that some phone users tend to
travel very far during the data collection period.

The relationship between Rg and SES, as illustrated in Fig. 5D, is
different from that of Singapore. In general, mobile phone users who
live in poorer areas tend to travel shorter, but the difference between
the middle and upper user classes is relatively small. Spearman corre-
lation coefficient between income and radius of gyration equals to 0.17
(p-value <10−6). One possible explanation, as suggested in some
studies (Poston Jr, 1972; Wheeler, 1967), is that higher socioeconomic
status would lead to longer travel distances, which allows people to
access better housing and/or job opportunities (see Fig. 6B). Note that
we also compute Rg(weekdays) and Rg(weekends) for the Boston dataset, and
their relationships with SES are consistent with the result in Fig. 5D (see
Appendix C).

5.2. Activity locations, entropy, and travel diversity

Fig. 7 shows the relationships between SES and three high-level
mobility indicators (HMIs), which are the total number of activity lo-
cations (A), activity entropy (H1), and travel diversity (H2). These three
indicators describe — from different perspectives — the regularity of
phone users' daily travel and activity patterns.

The results reveal — in both cities — a lack of variability across SES
for all three indicators. For the first indicator A, we find that both cities
have a right skewed distribution (Fig. 7A and C), suggesting that a large
proportion of individuals tend to use a small set of locations for their
daily activities. The mean and standard deviation of A for Singapore are
14.24 and 10.44, as compared to 21.90 and 15.87 for Boston. As illu-
strated in Fig. 7B and D, the average value of A seems not to vary across
user classes, despite that the average values of A for the lower and
upper classes (e.g., 1, 18, 19 and 20) in Boston is slightly lower than the
overall mean, with Spearman correlation coefficient of 0.05 for Singa-
pore and − 0.06 for Boston.

For activity entropy (H1), our analysis produces similar distributions
for both cities, with the average value of 1.10 for Singapore (Fig. 7E)
and 1.12 for Boston (Fig. 7G). Although phone users in Boston have
more activity locations (A) on average, we can see that the activity

Fig. 5. (A–B) The distribution of radius of gyration (Rg) for the Singapore dataset and its relationship with user classes (box plots for 20 classes; whiskers indicate 1.5
interquartile range, mean is shown as dotted line, notch around median shows its standard error); (C–D) The distribution of Rg for the Boston dataset and its
relationship with user classes.
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(A) (B)

Fig. 6. (A) Top 25 % of the cellphone tower service areas by average housing price in Singapore; (B) Top 25 % of the census tracts by per capita income in Boston.

Fig. 7. (A–B) The distribution of the number of activity locations (A) for the Singapore dataset and its relationship with user classes; (C–D) The distribution of A for
the Boston dataset and its relationship with user classes; (E–F) The distribution of activity entropy (H1) for the Singapore dataset and its relationship with user classes;
(G–H) The distribution of H1 for the Boston dataset and their relationship with user classes; (I–J) The distribution of travel diversity (H2) for the Singapore dataset and
its relationship with user classes; (K–L) The distribution of H2 for the Boston dataset and its relationship with user classes.
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diversity of phone users in the two cities are highly comparable. One
potential reason is that for most of the people, their daily activities
mainly concentrate at a few locations (e.g., home and work location).
The regularity of human activities at these locations would have a
notable impact on the activity diversity of phone users. We next ex-
amine the relationships between H2 and SES. Again, the results suggest
that users across different socioeconomic classes exhibit similar levels
of travel diversity (Fig. 7J and L). This suggests that the wealth level of
people, as least in Singapore and Boston, is not a limiting factor that
affects how they travel around in the city.

5.3. Properties of returners and explorers (k-radius of gyration)

In this part, we consider only users for whom radius of gyration
based on stay locations is greater than zero, i.e., users for whom we
found at least two stay locations. This filtering left us with about
280,000 users in Boston area and about 1.25 million users in Singapore.
We also use the split of the whole population into q=9 socioeconomic
classes following the logic of Leo et al. (2016) that there are 3 major
classes (namely poor, rich and middle class) each of which could be
further split into 3 subclasses.

We calculate and compare k-radius of gyration with overall radius
of gyration (for k=2, 4, 8). We have found that in both cities there are
more returners than explorers even for k=2. Fig. 8 shows how 2-radius
of gyration relates to overall gyradius (see Appendix B for plots for
k=4, 8). In agreement with Pappalardo et al. (2015), there is a split
between users for whom k-radius is almost equal to overall radius of
gyration versus those for whom k-radius is much smaller than overall.
Interestingly, in our case 2-returners already represent more than 70%
of all users (70.35% of returners vs 29.65% of explorers in Singapore
and 72.49% of returners vs 27.51% of explorers in Boston). This means
that for more than 70% of the users top two locations (presumably
home and work for majority of the population) already explain more
than a half of overall activity space.

In Fig. 9, we show how the ratio of returners changes from one class
to another overall and separately on weekdays and weekends. These
plots show that for k=2, there are more returners in Boston in each
class. In addition, this stays the same on weekends for all k but changes
in overall patterns for k=4 and k=8. This means that top two loca-
tions better describe users' overall activity space in Boston, but four top
locations already better explain total gyradius in Singapore. This shows
that people in Singapore are more likely to travel beyond the top two
locations for daily activities. Higher prevalence of 4-returners and
especially 8-returners in Singapore could be explained by very

restricted area of the city-state that limits both people's movements and
coverage of our data.

We can see smaller number of returners on weekends than on
weekdays (and respectively higher number of explorers), i. e., the most
popular locations play lesser role in people's travel distance on week-
ends than on weekdays. Fig. 9 also shows that percentage of returners
grows when people become richer in Boston and shrinks in Singapore in
overall patterns for k equals 2 and 4 while trend is opposite for k=4, 8
on weekends. The latter could be explained as some richer people could
occasionally travel quite far on weekends and this was captured by the
Boston dataset. The former though deserve a closer look.

In Fig. 10, we plot a distribution of ratio =S R R/g g2
(2) . The closer this

value to 1, the better the two most popular locations describe person's
overall activity space. We will call strong returners those for whom 2-
radius and overall radius of gyration are very close or, more precisely,
when ≤ ≤R R0.9 / 1.1g g

(2) . A high bar around S2= 1.0 in Fig. 10 in-
dicates that there are a lot of people for whom Rg

(2) is almost equal to Rg.
In Fig. 11, we show proportions of strong 2-returners in each class. We
can see here a clear trend: in Boston the percentage of strong returners
increases with class while in Singapore it increases a little from the
poorest to the second class but then decreases when people become
richer. Plots in Appendix B show similar picture for k equals 4 and 8.
This could be caused by the same reasons that cause overall radius of
gyration to increase in Boston and decrease in Singapore with socio-
economic class. Namely, wealthier people can afford living closer to the
city center and their work location in Singapore. So their 2-radius of
gyration tends to become smaller, while other trips, including leisure
and recreational trips, could require traveling longer distances. Con-
versely, in Boston, higher social classes choose better housing options
outside the city and travel longer distances to work. This makes their 2-
radius of gyration relatively large. In the same time, other destinations
mostly fall within the home-work circle and do not increase overall
gyradius.

5.4. Unicity

Our analysis on unicity consists of two parts. First, we distinguish
two different levels of spatial aggregation, i.e., the 500m grid and 1 km
grid levels. Fig. 12 shows the percentage of users that can be uniquely
identified (shown on y-axis) when considering from 2 to 10 activity
locations (shown on x-axis). According to the previous results published
in De Montjoye et al. (2013), 95% of the users can be uniquely iden-
tified when taking into an account 4 spatiotemporal points. We got
similar results when looking at top four locations of 500m grid (94.33%

Fig. 8. 2-radiuses of gyration versus overall gyradiuses in Singapore and Boston.
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and 99.53% for Singapore and Boston, respectively), but this percen-
tage can drop down to 75.08% when aggregating on 1 km grid level in
Singapore. However, after adding the knowledge about just one more
location a user frequently visited, more than 90% of all users can be
uniquely identified no matter which spatial aggregation is used. These

results show that most of the users have unique traces in a sense that a
few top locations they visited distinguish them from the rest of the
users.

We next explore the relationships between unicity and SES in the
two cities. For each city, we divide users into nine classes using the

Fig. 9. A percentage of returners in each class overall and on weekdays and weekends separately for k=2, 4, 8.

Fig. 10. A distribution of the ratio =S R R/g g2
(2) . A peak close to the right indicates a high number of strong 2-returners.
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social stratum model and for each value of the number of top locations
l, we compute the percentage of users that have been uniquely identi-
fied in each class. Fig. 13 shows the results for both cities. For Singa-
pore, as shown in Fig. 13A and B, the unicity value seems to be in-
dependent of SES under both spatial resolutions, no matter what value
of l (from 2 to 6) is chosen. The results suggest that although people
who belong to different social classes might prefer to visit different
types of places in the city, such difference does not cause a particular
class (e.g., rich people) to be more identifiable than others. For Boston,
when l equals 2 or 3, it is found that the percentages of unique users in
the lower (e.g., 1st) and upper (e.g., 9th) classes are lower. That means
the users in the poorer or richer classes in the city are less likely to be
uniquely identified when considering only the top few activity locations
(e.g., home and work).

6. Discussion and conclusion

By coupling large scale mobile phone and urban socioeconomic
datasets, this study introduces an analytical framework to better un-
derstand human mobility patterns and their relationships with travelers'
socioeconomic status (SES). Six mobility indicators, which include (1)
radius of gyration, (2) number of activity locations, (3) activity entropy,
(4) travel diversity, (5) k-radius of gyration, and (6) unicity, are derived
to quantify important aspects of mobile phone users' mobility char-
acteristics. We then propose a data fusion approach to approximating,
at an aggregate level, the SES of mobile phone users. Using Singapore
and Boston as case studies, we compare the statistical properties of the
six mobility indicators in the two cities and analyze how they vary
across socioeconomic classes.

The analysis results provide a multifaceted view of the relationships
between mobility and SES. By first examining radius of gyration, a
measure that quantifies the spatial dispersion of individual daily ac-
tivities, we find that phone user groups that are generally richer tend to
travel shorter in Singapore but longer in Boston. The contradictory
findings in the two cities suggest a complicated relationship between
travel distance and wealth level. Such contradictions have also been
discussed in previous studies. For example, some studies suggest a po-
sitive correlation between economic status and travel distance (e.g.,
commuting distance) (Poston Jr, 1972; Wheeler, 1967) while some
others observe an opposite trend mostly in smaller US cities (Maraffa &
Brooker-Gross, 1984) and Europe (Aguilra, Wenglenski, & Proulhac,
2009). These differences have deep roots in spatial arrangement of ci-
ties, which have been studied intensively during the last century. Works
by Alonso et al. (1964), Mills (1967) and Muth (1969) developed a bid
rent theory that explains concentric zones model proposed earlier (Park
& Burgess, 1925). These models assume the monocentric and isotropic
city. They could explain pretty well the spatial form of cities in the
United States, where traditionally wealthier people live in suburbs and
more disadvantaged occupy city centers. Although this arrangement is
changing and recent studies argue that the members of the advantaged
class tend to take up central locations (Florida & Adler, 2017), our

Fig. 11. A percentage of strong returners in each class overall and on weekdays and weekends separately showing opposite trends in Boston and Singapore.

Fig. 12. The percentage of all unique users, who were left after filtering out
inactive users, both in the Boston and Singapore datasets, aggregating on 500m
and 1 km grid levels.

Fig. 13. The percentage of unique users in each of nine socioeconomic classes, who were left after filtering out inactive users, both in the Boston and Singapore
datasets aggregating on 500m and 1 km grid levels.
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results still show that richer people travel further to access amenities in
Boston. At the same time, there are studies arguing that these classical
models, developed and shown to be working for North America, do not
work for Europe and Latin America, where their predicted distributions
of social classes are not observed (Hohenberg & Lees, 1995; Ingram &
Carroll, 1981). One possible reason for this is that not all cities can be
explained by the same model. Singapore is a polycentric city and there
are models that better describe such cities (Harris & Ullman, 1945; Louf
& Barthelemy, 2013). Other attempts to explain observed phenomena
include models involving public transportation (Glaeser, Kahn, &
Rappaport, 2008) or population density and segregation (Louf &
Barthelemy, 2016). An amenity-based theory (Brueckner, Thisse, &
Zenou, 1999) ties location by income to city's idiosyncratic character-
istics. Its authors use Paris as an example of a city where center is po-
pulated by higher social classes in contrary to Detroit. They argue that
the urban amenities of some city centers are so attractive that the
wealthy want to stay. This is disputed by the authors of “Why Do The
Poor Live In Cities?” (Glaeser et al., 2008), who present Paris as an
exception from the rule stated in the title of their paper. They explain
this exception by good public transportation connecting suburbs with
the city. The same is true for Singapore, which has a very good public
transportation system that connects all parts of the island very well. It is
also a very special case of city-island-state strictly constrained in land,
so it cannot allow for vast and sparse suburbs, but there are areas with
expensive landed houses relatively close to the center.

By investigating the relationships between SES and three other
mobility indicators— the number of activity locations, activity entropy,
and travel diversity — we find that for both cities, phone users across
different socioeconomic classes exhibit very similar characteristics. The
results suggest that wealth level, at least in Singapore and Boston, is not
a factor that restricts how people travel around in the city. Note that a
recent study based on mobile phone data collected in France observes a
positive correlation between travel diversity and per capita income
(Pappalardo et al., 2015). The finding is different from our study and is
worth discussing. First, the two studies are conducted at different scales
(i.e., national scale vs. city scale), which make the results to some ex-
tent incomparable. Second, it is important to mention that both Sin-
gapore and Boston are highly-developed cities with efficient public
transportation systems. This enables people to travel among destina-
tions conveniently even without relying on automobiles. It is thus
meaningful to repeat our analysis in other cities with underdeveloped
public transportation or where certain societal issues (e.g., poverty) are
pronounced. This would yield a more comprehensive view of the mo-
bility gap among socioeconomic classes in different types of cities.

The comparison between radius of gyration (Rg) and k-radius of
gyration (Rg

k( )) enables us to better understand to what extent a phone
user's top activity locations describe his/her overall activity space.
According to the analysis results, for both cities, 2-returners (defined as
phone users with ≥R R /2g g

(2) ) already represent more than 70% of the
phone users, which indicates that the top two activity locations to a
large extent capture the overall activity space of the majority of the
populations. By gradually increasing the value of k, it is found that a
higher number of activity locations (e.g., k=4 and k=8) better ex-
plains the overall activity space of phone users in Singapore than in
Boston. That means people in Singapore are more likely to travel be-
yond the top two locations (e.g., home and work place) for their daily
activities. By further examining the relationship between SES and
percentage of strong returners (defined as phone users with

≤ ≤R R0.9 / 1.1g g
(2) ), we find that in Boston the percentage increases

with socioeconomic class while in Singapore it generally decreases as
people become richer. That means compared to Singapore, the home-
work circle of richer people in Boston tend to be more inclusive of other
types of individual activities.

Finally, the unicity test explores to what extent phone users can be
uniquely identified based on the top l activity locations visited. The
results suggest that in Singapore, the percentage of phone users that can

be uniquely identified are very similar across different socioeconomic
classes, no matter what value of l is chosen. However, in Boston, the
percentages of unique users in the lower and upper classes are lower
when l equals 2 or 3. This suggests that the users in the poorer or richer
classes in the city are less likely to be uniquely identified when con-
sidering only the top few activity locations. While it is difficult to find
out the reasons at this moment, we think it is worthwhile to further
examine, in our future research, whether social segregation plays a
critical role in this. For example, if both the rich and the poor tend to
share the top few activity locations with similar others, this would
cause both social groups to be less unique in some sense.

Our comparative analysis shows that the relationship between mo-
bility and SES could vary among cities. It also indicates that certain
mobility indicators (e.g., travel diversity and the number of visited lo-
cations), which have been used in previous studies to predict socio-
economic development (Almaatouq et al., 2016; Smith-Clarke et al.,
2014), might not be effective in particular types of cities. This is also
why mobility characteristics are usually combined with other sociality
indicators (e.g., number of phone calls/social contacts) in the predic-
tion algorithms.

We want to point out a few limitations of this research. Although the
socioeconomic status of mobile phone users is approximated at an ag-
gregate level, the approximations are not perfect and there are still
some uncertainties. The method we use for inferring home locations
cannot provide perfect results, although they were shown to correlate
very well with the official statistics (Xu et al., 2017). In Singapore, we
associated phone users with the average housing price at their home
cells (i.e., Voronoi polygons). For some areas, especially where the
densities of cellphone towers are low, uncertainties could be introduced
when residential properties from different price levels are highly mixed.
In Boston, we used per capita income at census tract level provided by
the American Community Survey. The income data based on surveys
can also introduce uncertainties because of issues such as self-report
errors (Eckerstorfer et al., 2016). Moreover, since only one monetary
variable is used in each city, we were unable to capture other socio-
demographic characteristics such as phone users' education status, fa-
mily size, and household ownership. These are all important dimen-
sions of SES that can be considered in future studies. Another point is
related to the potential bias of the mobile phone datasets. Although the
datasets capture a large proportion of residents in the two cities, certain
demographic tiers, for example, the elders who tend to use mobile
phones less frequently, might be underrepresented. Lastly, the high-
level mobility indicators were based on location sequences derived
from the trajectory segmentation, which improves the quality of esti-
mates of the stay locations compared to estimates using the raw data.
But those indicators still capture a partial view of individual daily
mobility patterns due to the sparsity of the mobile phone datasets used
in this research. In the future, this issue can be overcome by in-
corporating mobility datasets with finer temporal granularity. Never-
theless, this research contributes to the broad field of human mobility
analysis by introducing a framework that integrates large scale mobile
phone and socioeconomic datasets. The framework can be applied to
other cities to better understand human travel behavior and activity
patterns as well as their links with socioeconomic development.
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Appendix A. Phone users' calling activity patterns

Fig. A.1. The distribution of users depending on number of days when they had recorded activity for the Singapore (A) and Boston (B) datasets.

Fig. A.2. The distribution of the proportion of users depending on the average (A–D) number of calls per day, (E–H) time between calls within each active day, (I–L)
number of active hours per day in Singapore (red) and Boston (blue) before (first and third column) and after (second and forth column) filtering inactive users. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Appendix B. Number of housing properties that fall within each cellphone tower service area

Fig. B.3. Distribution of the number of housing properties within each cellphone tower service area.
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Appendix C. Relationships between phone users' SES and radius of gyration computed on weekdays/weekends

Fig. C.4. (A–D) The histogram of Rg(weekdays) in the Singapore (red) and Boston (blue) datasets and their relationship with user classes (box plots for 20 classes;
whiskers indicate 1.5 interquartile range, mean is shown as dotted line, notch around median shows its standard error); (E–H) The same for Rg(weekends). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Appendix D. K-radius of gyration for higher values of k

Fig. D.5. 4- and 8-radiuses of gyration versus overall gyradiuses in Singapore and Boston.
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Fig. D.6. A distribution of the ratio =S R R/k g
k

g
( ) for k=4 and k=8. A peak close to the right indicates a high number of strong k-returners.

Fig. D.7. A percentage of strong k-returners (k=4, 8) in each class overall and on weekdays and weekends separately showing opposite trends in Boston and
Singapore.
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