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Abstract
This study proposes a framework to investigate the roles of urban spaces

in connecting social contacts (i.e., “friends”). The framework is applied to

a Call Detail Record (CDR) dataset collected in Singapore. First, a compar-

ative analysis is performed to understand how friends share urban space

differently from random people. Then, we derive two metrics to quantify

the “bonding” and “bridging” capabilities of places in the city. The two

metrics reflect the potential of a place in connecting friends and random

people (e.g., chance encounters), respectively. Finally, we examine the

temporal signature of the places’ bonding capabilities, and associate the

results with various types of Points of Interest (POIs). We find that: (1)

friends are more likely to share urban space than random people, and

they also share more locations; (2) a place could play different roles in

connecting friends vs. random people, and the relationship (between

bonding and bridging) varies depending on the time and type of a day

(weekdays vs. weekends); (3) the temporal signature of bonding capabil-

ity is strongly related to the semantics of a place; (4) certain POI types

(e.g., shopping malls) tend to have a much higher impact on bonding

capability than others (e.g., sports centers).

1 | INTRODUCTION

We are living in an age where human social interactions are becoming increasingly convenient. People are able to

approach others at any time, from anywhere, through phones, emails, and social networking tools (e.g., Facebook and

Twitter). The communications evolution has enriched the ways people socialize, and triggered extensive discussions on

the impact of geography on social network structures (Cairncross, 2001; Goldenberg & Levy, 2009). Although we are

no longer bounded when interacting with others, physical space still serves as a primary channel where social ties form

and evolve. We tend to build our social capital at and around places where we live, work and entertain. Understanding

how social networks are tied to human activities in geographic space has great implications for urban design, economic

development, and social well-being, among others.

Recent advancements of information and location-aware technologies have generated many new data sources

(e.g., location-based social networks, mobile phone data) that capture human movements and social interactions simul-

taneously. These datasets enable researchers to better understand the interplay between human mobility patterns and
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social network structures. During the past few years, several studies have been conducted to infer human movement

patterns based on social relations (Backstrom, Sun, & Marlow, 2010; Cho, Myers, & Leskovec, 2011), or to predict new

social links based on mobility similarities among individuals (Eagle, Pentland, & Lazer, 2009; Wang, Pedreschi, Song,

Giannotti, & Barab�asi, 2011). These studies offer valuable insights into how mobility and social network structures

influence each other. However, few studies attempt to link these two dimensions within the context of urban space.

Our knowledge of how people share urban space with their social contacts (“friends”) is still limited. A systematic inves-

tigation of this question could distinguish the roles that urban spaces play in connecting people, and suggest how cities

can be better designed to accommodate people’s social interactions.

Using a Call Detail Record (CDR) dataset collected in Singapore, this study proposes a framework to gain insights into

the spatiotemporal characteristics of friends’ use of urban space. First, we introduce a spatial co-location measure to quan-

tify how likely a given pair of cellphone users appears at the same location at approximately the same time. By extracting a

city-scale social network from the mobile phone dataset, we apply the measure to both friend pairs and random user pairs

in the network. A comparative analysis is then performed to better understand how friends share urban space differently

from random people. Based on the co-location patterns observed from the two sets of user pairs, we further derive two

place-based co-location metrics to quantify the “bonding” and “bridging” capabilities of the places, respectively. The “bond-

ing” capability reflects the potential of a place in bringing friends together, while the “bridging” capability describes how likely

two random people tend to co-locate at a given location. Finally, we apply a hierarchical clustering algorithm to investigate

the temporal signature of the places’ bonding capabilities. The clustering results are associated with various types of Points

of Interest (POIs) to reveal the relationships between the semantics of the places and their bonding capabilities.

2 | L ITERATURE REVIEW

2.1 | Social ties and distance decay

Internet and mobile technologies have enriched the ways people socialize with each other. Since the turn of the cen-

tury, debates have emerged over how these new technologies will redefine the role of geography in shaping our daily

communication patterns (Cairncross, 2001; Graham, 1998). Inspired by these discussions, scholars started examining

the geographic properties of various human social networks, with considerable focus on the distance decay effect. For

example, using data from LiveJournal network, Liben-Nowell, Novak, Kumar, Raghavan, and Tomkins (2005) found

that the probability of friendship and the geographic distance (which separates the friend pairs) follows a decay func-

tion PðdÞ�d21:2. Similar patterns are discovered in Facebook communities (Backstrom et al., 2010; Goldenberg & Levy,

2009) that friendship probability is inversely proportional to the geographic distance PðdÞ�d21:0. The findings illustrate

that geography plays an important role in manifesting online social network structures.

In recent years, mobile phone data have emerged as a new data source for modeling such social-spatial relationships. In

particular, Lambiotte et al. (2008) and Krings, Calabrese, Ratti, and Blondel (2009) find that the intensity of inter-city telecom-

munications in Belgium can be well approximated by a gravity model with a scaling exponent of a52. A similar distance-

decay effect is observed in an inter-city mobile communication network in China (Kang, Zhang, Ma, & Liu, 2013), but with a

different scaling exponent (a50:5). These studies have generated valuable insights into how spatial proximity affects social

network structures. However, the interplay between human social interactions and their daily activity patterns remains

unclear. The variations in the scaling exponents indicate that the impacts of physical space on social network structures are

intertwined. Questions regarding how social relations are tied to humanmobility patterns need to be better addressed.

2.2 | Coupling human mobility and social network analysis

Human movements exhibit a high degree of spatial-temporal regularity (Gonz�alez, Hidalgo, & Barab�asi, 2008; Song,

Qu, Blumm, & Barab�asi, 2010). Yet such regularity depicts a partial aspect of human behavioral patterns. Friendship

and social ties, for example, motivate people to travel and participate in activities beyond their daily routines. By ana-

lyzing mobile phone data and online location-based social networks (LBSNs), Cho, Myers and Leskovec (2011)
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conclude that social relationships explain 10 to 30% of human movements, especially for long-distance travel. Similarly,

Backstorm, Sun and Marlow (2010) find that social network structures can be leveraged to better predict the physical

locations of Facebook users. These studies suggest that social relations could lead to a better forecast of human mobil-

ity patterns in space and time.

Instead of inferring movement patterns from social ties information, many scholars focus on predicting new links

in social networks by measuring mobility similarities among individuals (Crandall et al., 2010; Eagle et al., 2009; Wang

et al., 2011). Besides their contributions to social link predictions, these studies reveal that people who are closer to

each other in social space are more likely to have co-location patterns in geographic space. The correlations between

social proximity and mobility similarity enable researchers to model human movement choices more precisely (Toole,

Herrera-Yaq€ue, Schneider, & Gonz�alez, 2015).

2.3 | Embedding social networks in urban space

Although the preceding studies have integrated the analysis of human mobility and social networks, the role of urban

space in connecting the two has not been addressed explicitly. Cities create massive opportunities of human social

interactions. Yet the spatial distance that separates people is always a constraint on face-to-face communications.

There have been continuous discussions on whether human travel and telecommunications complement or substitute

for each other (Albertson, 1977; Choo, Lee, & Mokhtarian, 2007; Mok, Wellman, & Carrasco, 2010). To better answer

these questions, survey data are used to assess the geographic properties of social interactions that occurred in differ-

ent forms (e.g., face-to-face, email and telecommunications) and among different social-economic groups (Carrasco,

Miller, & Wellman, 2008; Larsen, Axhausen, & Urry, 2006).

These attempts are followed by scholars who rely on other emerging datasets to investigate the relationships among

social ties, mobility and physical locations. In particular, Cranshaw, Toch, Hong, Kittur, and Sadeh (2010) introduce location

entropy to quantify the diversity of social interactions at a particular place, using location traces of 489 users collected by

laptop and cell phones. The location entropy measure is used to better distinguish the co-location patterns among friends

and among strangers. However, as 93.7% of the location data are collected when people are with their laptops, the findings

are biased towards social interactions that take place at certain locations (e.g., home and office).

Instead, Calabrese, Smoreda, Blondel, and Ratti (2011) used a large mobile phone dataset in Portugal to assess the

interplay between telecommunications and face-to-face interactions. They find that more than 90% of users who have

called each other have also shared the same place, and the expected number of co-locations decreases with distance

between homes. The study brings a new perspective of examining social interactions within urban context. However,

when and where people tend to co-locate with their friends was not discussed. By using a mobile phone dataset in Jia-

musi, China, Wang, Kang, Bettencourt, Liu, and Andris (2015) find that friends are more likely to share urban space

than a random pair of users, and downtown is used by many social groups while each suburb only hosts one or two.

Using the same type of dataset, a more recent study quantifies the potential effects of space and place on social net-

work structures (Shi, Wu, Chi, & Liu, 2016). These studies advance our understanding of how social contacts share

urban space, and suggest the importance of embedding social network analysis in geographic information systems

(Andris, 2016). However, few studies have attempted to quantify the roles of urban spaces and their characteristics in

fostering social engagement. Given this as a critical issue in urban planning and policy making (Holland, Clark, Katz, &

Peace, 2007; Madanipour, 1999), it is important to ask questions about how effectively urban space and places bring

together people, the nature of those places, and what kinds of patterns arise in cities.

3 | RESEARCH DESIGN

3.1 | Establishing the social network structure from mobile phone data

Singapore is a city-state that covers a total area of 719 km2. It had a population of 5.18 million in 2010. The country

has achieved rapid economic growth in the past half century and it is now a global finance and transport hub. As a city
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recognized by its livable urban environment, Singapore has many characteristics that facilitate social bonding and com-

munity engagement. For example, the city is deployed with affordable transit services, allowing people to travel among

destinations conveniently during most time periods in a day. Various shopping malls, community clubs, and food

hawker centers – hierarchically clustered across different regions – enable people to socialize through a diverse set of

leisure and recreational activities. Understanding how urban spaces are used and shared by people in Singapore would

thus provide insights into its social and cultural environment, and inspire new thoughts on societal well-being and sus-

tainable urban development.

The CDR dataset used in this study is collected by a major mobile phone carrier in Singapore.1 The anonymized

dataset covers 4.4 million cellphone users during a period of 50 days (21 March to 9 May, 2011). Each mobile phone

record tracks the unique ID of the caller and the callee, the communication type (i.e., call/SMS), as well as the date,

time and the phone users’ connected cell tower when the phone communication starts. There are about 5,000 cell-

phone towers that are densely distributed across the whole of Singapore, and the average nearest distance between

them is about 100 m. Considering that CDRs are passively collected during phone call communications, to control the

issue of data sparsity, this research focuses on a subset of cellphone users, who have at least 25 active days of phone

usage (e.g., made or received a call/text message). This allows us to mitigate the data sparsity issue by filtering individu-

als: (1) who are short-term subscribers (e.g., tourists), and (2) who have inactive phone usage during the study period.

Thus, the choice of 25 active days provides a good balance between including subscribers who seldom use a phone

and excluding too many users. The resulting dataset after removing these individuals consists of 2.1 million cellphone

users.

To establish the social network structure, we measure the communication patterns between pairs of users. Let G(V, E)

denote an undirected graph, where V denotes the set of cellphone users, and E denotes the set of edges which correspond

to social ties. Given two cellphone users x and y, we add a link (x, y) to G if we observe at least one reciprocal call between

them during the study period. The undirected graph after performing the link generation consists of jVj52,131,285 nodes

and jEj59,071,808 edges. The average node degree (i.e., number of social contacts per user) is 8.5, and the first, second

(i.e., median) and third quartiles are 1.0, 5.0 and 12.0, respectively. In the remainder of this article, we refer to the pairs of

phone users that are connected in G as friend pairs.

3.2 | Inferring individual home and work locations

To evaluate whether the dataset reflects the population distribution in Singapore, we estimate each individual’s home

(and work) location. The estimated home locations are then aggregated by planning area where census data are avail-

able for comparison. The process of inferring home location is still an open question (Bojic, Massaro, Belyi, Sobolevsky,

& Ratti, 2015) and there have been many studies which discuss how home and work locations can be inferred from

CDR data (e.g., Ahas, Silm, Järv, Saluveer, & Tiru, 2010; Isaacman et al., 2011; Xu et al., 2015, 2016). In this study, we

estimate each individual’s home location as the most used cellphone tower before 06:00 and after 19:00, whereas

work location is identified similarly for time between 08:00 and 17:00 on workdays. After applying the location detec-

tion algorithm, we calculate the total number of cellphone users with home location in each planning area.2 As shown

in Figure 1a, we find that the total number of cellphone users sampled in each planning area is strongly correlated with

the population distribution recorded by the census data (Department of Statistics Singapore 2010; http://www.

singstat.gov.sg/), with a Pearson’s correlation coefficient of 0.98.

Some previous studies find that the probability of friendship in a social network decays with geographic distance

(Backstrom et al., 2010; Goldenberg & Levy, 2009; Lambiotte et al., 2008). To explore whether our dataset exhibits

similar characteristics, we compute: (1) the total number of connected nodes Cd; and (2) the number of all pairs of

nodes Nd separated at a distance d (between their home locations) in graph G. We repeat this procedure for different

distance values and calculate the probability of friendship at these distances pðdÞ5Cd=Nd. As shown in Figure 1b, the

probability that two people are connected at a distance follows a power law function PðdÞ�d20:95. The scaling expo-

nent is very close to the value (i.e., 21:0) derived from Facebook user communities (Backstrom et al., 2010;

Goldenberg & Levy, 2009).
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3.3 | Measuring co-location patterns between individuals

People share urban space with others for a variety of reasons. Some are planned (e.g., face-to-face meetings) and

some are not (e.g., encountering strangers in metro stations). To examine how friends share urban space differently

from random people, we need to measure how likely a cellphone user pair tends to appear at the same location at

approximately the same time. To achieve this, we first divide the study area into a 500 m regular grid, and map cell-

phone users’ location traces on to grid cells. We choose 500 m because on the one hand, it is relatively fine-grained to

capture the dynamics of people’s space usage. On the other hand, since cellphone towers can be densely distributed in

populated areas (e.g., two cellphone towers that are vertically distributed in a building), using 500 m regular grid ena-

bles us to aggregate cellphone towers that are very close to each other, so that we can systematically evaluate phone

users’ co-location patterns.

Specifically, for a given cellphone user, we assign each of his/her location records to the grid cell where the corre-

sponding serving cellphone tower locates. Although we are aware that Voronoi Polygons are often used to approxi-

mate a cellphone tower’s service area (Xu et al., 2015; Yuan & Raubal, 2012), which could overlap with multiple grid

cells, it appears that no consensus has been reached by existing studies on how cellphone tower service areas can be

reasonably reconstructed. Moreover, given a very high density of cellphone tower deployment in Singapore, some Vor-

onoi Polygons are too small to represent any meaningful location/place in the city. Hence, the current approach con-

siders each grid cell as a collection of cellphone towers which reflect the general area where the cellphone users have

stayed. One advantage of this approach is that when measuring co-location patterns of two cellphone users, if they

appear at the same cellphone tower, they will always be assigned to the same grid cell.

We next introduce how co-location patterns can be measured between a given pair of cellphone users. As cell-

phone users’ locations are only available when they engage in phone call/SMS communications, it is not appropriate to

directly measure the number of times or the duration that two individuals co-locate with each other. Hence, we adopt

the concept of spatial co-location rate used in Wang et al. (2011) to describe the probability that two individuals are

co-located in space during a certain period of time.

Given the cellphone trace of an individual x as a list of tuples fðl1; t1Þ; ðl2; t2Þ; . . . ðln; tnÞg, where li denotes the user’s

location (i.e., grid cell) at time point ti, the probability that user x stays at a location L during a defined time period T is:

pxðL;TÞ5mxðL;TÞ=nxðTÞ (1)

where mxðL; TÞ denotes the total number of times x is observed at location L during T, and nxðTÞ denotes the total

number of times x is observed during time period T at any location. Note that:

(a) (b)

FIGURE 1 (a) Correlation between the number of detected home locations vs. census population (by planning area in
Singapore). (b) The probability p(d) of friendship among peoplewho live at a distance d follows PðdÞ�d20:95. The fluctua-
tion of the last several points (i.e., when d � 35 km) is caused by the boundary effect when the distance d approaches the
diameter of Singapore. After removing those points, the exponent changes from20.95 to20.91
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X

L2LocxðTÞ
mxðL;TÞ5nxðTÞ (2)

where LocxðTÞ is the set of all locations visited by x during time period T.

Note also that an individual’s cellphone communications do not take place regularly over time. People could make several

phone calls in a short period of time and then none for hours (Barab�asi, 2010; Candia et al., 2008). Hence, pxðL;TÞ could be

biased due to the “bursty” nature of CDRs. To control this effect, when we measure mxðL; TÞ, if an individual x is observed

multiple times at location L during a one-hour time window (e.g., 07:00 – 08:00), we only consider them as one entry.

Given two individuals x and y, assuming that the probabilities of their visits to the same location are independent,

we can calculate the probability that they are co-located at a given location L during time period T:

Colx;yðL;TÞ5pxðL; TÞ3pyðL;TÞ (3)

Iterating this process through all the locations L 2 Locx;yðTÞ gives us a spatial co-location vector ½Colx;yðL1; TÞ;
Colx;yðL2; TÞ; . . . ; Colx;yðLm; TÞ�, where m denotes the total number of grid cells in the study area. The spatial

co-location rate between x and y is calculated as the sum of the values in the spatial co-location vector:

SColx;yðTÞ5
X

L2Locx;yðTÞ
Colx;yðL;TÞ (4)

The total number of locations shared by the user pair during T is:

NColx;yðTÞ5
X

L2Locx;yðTÞ
½Colx;yðL; TÞ>0� (5)

where ½Colx;yðL;TÞ>0� takes the value of 1 if Colx;yðL;TÞ>0, and 0 otherwise. We refer the spatial co-location rate and

number of shared locations as the user-pair based co-location metric.

3.4 | Defining the bonding and bridging roles of places

The spatial co-location rate describes how likely a cellphone user pair shares the urban spaces. The spatial co-location

vector, instead, distinguishes the roles that different locations play in bringing people together. Here we introduce a

place-based metric, PColUðL; TÞ, to measure the average co-location rate of a set of user pairs U (which can be a group

of friend pairs or a collection of random user pairs) at location L during time period T.

Figure 2 illustrates how the place-based metric is derived, using two pairs of individuals and four distinct locations

(i.e., grid cells) as an example. Let U denote a set of user pairs (here jUj52), given a user pair ðx; yÞ 2 U, we can com-

pute the probabilities of their stay at different locations during time period T. By deriving the spatial co-location

FIGURE 2 Place vs. user-pair based co-locationmetrics
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vectors, we can generate the spatial co-location rate and number of shared locations for each user pair (i.e., user-pair

based co-location metric shown in the figure).

Based on the derived spatial co-location vectors, we further aggregate the vectors in space, and calculate the aver-

age co-location rate of all user pairs at each place:

PColUðL;TÞ5
X

ðx;yÞ2U
Colx;yðL; TÞ=jUj (6)

The meaning of the placed-based metric is intuitive. For example, if the metric is computed over all friend pairs in

a city, it refers to the average probability that each place is shared by the friend pairs. A place with a high value indi-

cates that this place has a large potential of bringing friends together in the city. Instead, if we compute the metric

over random user pairs, it will describe the average chance that two random people tend to co-locate at a place.

In sociology, two important concepts – bonding and bridging – are used to describe distinctive characteristics of social

capital and civil engagement (Putnam & Goss, 2002). In particular, bonding networks tend to link people “who are like one

another in important aspects”, whereas bridging refers to “social networks that bring together people who are unlike one

another” (Putnam & Goss, 2002, p. 11). Thus, we refer to the two metrics derived in this section – one for friend pairs and

the other for random user pairs – as the bonding and bridging capabilities of places, respectively. The two place-based met-

rics can be used to compare co-location patterns of friends and random people from the perspective of urban space.

3.5 | Comparing co-location patterns: Friend pairs vs. random user pairs

We propose a framework to compare co-location patterns of friends and random people from the perspectives of: (1)

user pairs and (2) urban space. As shown in Figure 3, based on the social network G extracted from the CDR dataset,

we generate two sets of user pairs by: (1) drawing all friend pairs (denoted as set Us), and (2) drawing random user pairs

no matter if they are friends or not (denoted as set Ur). We then compute the spatial co-location vectors for each user

pair in Us and Ur, which are then used to derive the user-pair based and place-based co-location metrics.

FIGURE 3 Comparing co-location patterns: Friend vs. random user pairs
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Since people who live or work at the same place are more likely to produce a high co-location rate at these places,

in this research, we only consider user pairs who do not share the same home or work location (measured at the grid

cell level). In particular, we extract 7,211,717 friend pairs with distinct home and work locations from 9,071,808 social

ties in G. For Ur, we randomly sample 10,000,000 user pairs from the dataset and evaluate their co-location patterns.

To reflect the temporal variations of phone users’ co-location patterns, as shown in Figure 4, we separate week-

days and weekends, and each type of day is divided into eight 3 hr time windows. Thus, the spatial co-location vectors

of each user pair are computed over the 16 time windows. For example, given a user pair x and y, Colx;yðL; T4Þ reflects
the probability that they tend to co-locate at L during 11:00–14:00 on weekdays. Note that for a user pair x and y,

Colx;yðL;TÞ is an estimate of the generic weekdays or weekends. In some situations, a pair of phone users could have a

high co-location rate at a place even if they did not always share this place on the exact same day. For example, given

a time window T4 (i.e., 11:00–14:00), if the phone records of a user x usually appeared at a location L on Mondays,

Tuesdays and Fridays, while that of another user y often appeared at the same location on Tuesdays, Wednesdays and

Thursdays, they still tend to have a high co-location rate at L. However, we believe that calculating the spatial co-

location vectors on generic weekdays and weekends is reasonable since: (1) CDRs are sparse in time and people’s call-

ing patterns could vary significantly from each other; and (2) it represents an interaction potential and reflects the fact

that social contacts have similar experiences, preferences, and place-based knowledge.

4 | RESULTS

4.1 | Co-location patterns from the perspective of user pairs: Friends vs. random people

Figure 5 illustrates the mean (and standard deviation) of the spatial co-location rate for two sets of user pairs (Us and

Ur). On weekdays, as shown in Figure 5a, the average co-location rate of friend pairs exhibits notable fluctuations and

the curve peaks at time window 11:00–14:00. On weekends, however, the temporal variation is less obvious, suggest-

ing that the potential of the city in bringing friends together remains relatively stable over time. For random user pairs,

the two curves show similar temporal patterns, indicating that the city’s potential in bridging chance encounters are

roughly the same on weekdays and weekends (Figure 5b).

By comparing Figures 5a and b, we find that friends are more likely to share urban space than random user pairs. For

each time window T, we perform a Welch’s T-Test to evaluate whether the average co-location rate of friend pairs

(SColx;yðTÞ, where ðx; yÞ 2 Us) is larger than that of random user pairs (SColx0;y0 ðTÞ, where ðx0; y0Þ 2 Ur ). As shown in Table 1,

the p-values for all the 16 timewindows are below 0.001, suggesting a significantly higher co-location rate for friend pairs.

We also notice that the average co-location rate of friend pairs on weekdays is generally higher than that of the

corresponding time window on weekends (Figure 5a). By further computing the average co-location rate, for each

friend pair ðx; yÞ 2 Us, on weekdays as well as on weekends:

SColx;yðweekdaysÞ51
8

X8

i51

SColx;yðTiÞ (7)

SColx;yðweekendsÞ51
8

X16

i59

SColx;yðTiÞ (8)

we find that:

FIGURE 4 Temporal granularity for the co-location analysis
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TABLE 1 Results of Welch’s t-test on the average co-location rates of friend and random user pairs

Time Window SColx;yðTÞ SColx0 ;y0 ðTÞ t df P Value

T1 692:231025 15:831025 323.5 7452200 <0.001

T2 1777:131025 76:631025 717.5 7624400 <0.001

T3 3975:331025 107:831025 1108.3 7341900 <0.001

T4 4236:231025 137:131025 1220.8 7379100 <0.001

T5 3650:931025 139:731025 1179.3 7425700 <0.001

T6 1994:731025 139:831025 1129.0 7567700 <0.001

T7 1464:131025 108:831025 860.8 7667700 <0.001

T8 1454:631025 63:931025 578.2 7595100 <0.001

T9 655:531025 15:131025 319.3 7448900 <0.001

T10 1057:031025 41:831025 423.7 7606100 <0.001

T11 1628:731025 98:531025 733.6 7703800 <0.001

T12 1652:131025 133:731025 828.7 7746500 <0.001

T13 1675:131025 158:031025 790.4 7797400 <0.001

T14 1556:131025 155:931025 794.4 7817100 <0.001

T15 1445:131025 115:031025 722.5 7808700 <0.001

T16 1361:931025 59:631025 545.6 7618100 <0.001

Small p-values suggest that the difference is statistically significant.

(a) (b)

FIGURE 5 Spatial co-location rate of user pairs: (a) mean and standard deviation for friend pairs; and (b) mean and stand-
ard deviation for random user pairs
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� 73.9% of the friend pairs have shared urban space on both weekdays and weekends, i.e., SColx;yðweekdaysÞ>0 and

SColx;yðweekendsÞ>0.

� 19.6% of the friend pairs have shared urban space only on weekdays.

� 2.5% of the friend pairs have shared space only on weekends.

� 4.0% of the friend pairs have neither shared urban space on weekdays or weekends.

By further comparing SColx;yðweekdayÞ and SColx;yðweekendÞ for the first category, we find that 55% (out of the 73.9% of

the friend pairs sharing urban space on both weekdays and weekends) are more likely to share urban space on weekdays

than on weekends, and the mean difference between SColx;yðweekdayÞ and SColx;yðweekendÞ is 0.03. For the remaining

45%, the mean difference between SColx;yðweekdayÞ and SColx;yðweekendÞ is 20.015. The findings enable us to better

explain higher co-location rates for friends on weekdays (Figure 5a). First, the percentage of friend pairs who are more

likely to share urban space on weekdays accounts for the majority of the population (73.9% * 55%119.6%560.25%).

Furthermore, for those user pairs with a higher co-location rate on weekends, the absolute difference between weekdays

and weekends is relatively small.

Figure 6 illustrates the mean (and standard deviation) of number of shared locations (NColx;yÞ for two sets of user

pairs. For friend pairs, the mean NColx;y reaches its peak at time window 17:00–20:00 on weekdays, suggesting a high

diversity of co-location in space after normal work hours. On weekends, the mean NColx;y is generally lower, with the

values slightly above 1.0 during the peak periods (i.e., 11:00–14:00, 14:00–17:00 and 17:00–20:00). It appears that

friends tend to share more unique locations on weekdays than on weekends. For each friend pair ðx; yÞ 2 Us, we derive

the total number of locations shared on weekdays and weekends as the union of the shared locations during the corre-

sponding time windows:

NColx;yðweekdaysÞ5jLðT1Þ [ LðT2Þ . . . [ LðT8Þj (9)

NColx;yðweekendsÞ5jLðT9Þ [ LðT10Þ . . . [ LðT16Þj (10)

Here LðTiÞ denotes the set of unique locations shared by (x, y) during time window Ti. Figure 7 shows the histo-

gram of the difference between NColx;yðweekdaysÞ and NColx;yðweekendsÞ for friend pairs. We find that 81.95% of the

friend pairs shared more unique locations on weekdays than on weekends. The mean and median difference (for all

friend pairs) are 6.8 and 5.0, respectively.

(a) (b)

FIGURE 6 Number of shared locations of user pairs: (a) mean and standard deviation for friend pairs; and (b) mean and
standard deviation for random user pairs
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As compared with friends, random user pairs on average shared less unique locations (see Figure 6b). For each

time window, we perform the same Welch’s T-test to evaluate whether the average number of locations shared by

friend pairs (NColx;yðTÞ) is greater than that of random user pairs (NColx0 ;y0 ðTÞ). As shown in Table 2, the p-values of

FIGURE 7 Histogram of the difference between the number of unique locations shared by friend pairs onweekdays
andweekends

TABLE 2 Results of Welch’s t-test on the average number of locations shared between friend and random user
pairs

Time Window NColx;yðTÞ NColx0 ;y0 ðTÞ t df P Value

T1 80:531023 1:831023 400.5 7310300 <0.001

T2 675:631023 31:831023 984.8 7441300 <0.001

T3 1972:031023 212:731023 1601.6 7929000 <0.001

T4 3095:831023 371:331023 1840.0 7989800 <0.001

T5 3660:731023 434:031023 1826.4 7918000 <0.001

T6 5028:031023 737:331023 2061.4 8268500 <0.001

T7 2519:331023 313:031023 1556.5 7939000 <0.001

T8 498:831023 23:031023 849.0 7493000 <0.001

T9 69:531023 1:631023 434.2 7337000 <0.001

T10 102:131023 4:131023 586.9 7477400 <0.001

T11 566:331023 46:931023 1186.8 7769700 <0.001

T12 1155:431023 127:831023 1472.0 7910100 <0.001

T13 1171:131023 142:631023 1435.8 7951600 <0.001

T14 1282:231023 170:131023 1418.0 8000400 <0.001

T15 872:031023 90:031023 1180.5 7778700 <0.001

T16 330:031023 16:931023 822.3 7483700 <0.001

Small p-values suggest that the difference is statistically significant.
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the 16 time windows are all below 0.001, suggesting a significant difference between the number of locations shared

by the two sets of user pairs.

4.2 | Co-location patterns from the perspective of urban space: Bonding vs. bridging

Two place-based co-location metrics (bridging vs. bonding) are derived to better understand how different places are

shared by the two sets of user pairs. As the overall intensities of the two metrics are different, to make them compara-

ble, for each time window T, we first calculate the relative bonding capability of each grid cell L as the average co-

location rate of friends at this place, normalized by the maximum value (denoted as maxPColUs ) across all places during

the sixteen time windows:

NorPColUs ðL;TÞ5
PColUs ðL; TÞ
max PColUs

(11)

Similarly, the relative bridging capability of a grid cell L is calculated as:

NorPColUr ðL;TÞ5
PColUr ðL;TÞ
max PColUr

(12)

Figure 8 shows the relative bonding and bridging capability of the grid cells during selected time windows. For time

window T4 (i.e., 11:00–14:00 on weekdays), grid cells with a high level of bridging capability (see Figure 8e) mainly con-

centrate in an area in the southern part of Singapore, which refers to the downtown core. The downtown core serves as

the financial hub of Singapore where numerous corporations and government agencies are located. A high population

density in this area during the day time on weekdays creates massive opportunities for random people to co-locate with

each other. The co-location patterns of friends, however, are very different from the aforementioned patterns for the

same time window (Figure 8a). There are many places other than the downtown core that have a relatively high level of

bonding capability, which indicates that these places, although not as “crowded” as downtown Singapore, seem to be

important to friends and their social interactions. For example, the relative bonding capability at some places such as

Nanyang Technological University (NTU) and the National University of Singapore (NUS) are relatively high (Figure 8a).

We also notice that places with a high level of bonding capability tend to spread out across different planning

areas in Singapore. However, these grid cells become less attractive to friends during time window T6 (i.e., 17:00–

20:00 on weekdays, see Figure 8b), indicating that some places can be important to friends only during the day time.

On weekends, the bonding capability of the places on 11:00–14:00 (Figure 8c) and 17:00–20:00 (Figure 8d) are differ-

ent from that of the same time window on weekdays, suggesting that the role of a place in bringing friends together

could vary between weekdays and weekends. For the four maps demonstrated for weekends, the place with the high-

est bonding or bridging capability corresponds to the same grid cell. The grid cell intersects with part of the Orchard

road, which is the retail and entertainment hub of Singapore.

We notice that during 11:00–14:00 on weekends (Figures 8c, g), grid cells that are more attractive to friends tend

to have a higher level of bridging capability. However, during the same time window on weekdays (Figures 8a, e), the

spatial patterns of the two metrics appear to be less similar.

To assess the similarities of the two spatial patterns quantitatively, for each time window T, we compute the Spearman’s

rank correlation between NorPColUs ðL; TÞ and NorPColUr ðL;TÞ. As we are only interested in places that are meaningful to

friends, those grid cells with a very small value of bonding capability throughout the study days are not considered. Specifi-

cally, we calculate the mean value of NorPColUs ðL;TÞ for each grid cell across the 16 time windows, and grid cells with a

mean relative bonding capability equal or greater than 0.01 (369 in total) are included in the correlation analysis (Figure 9a).

As illustrated in Figure 9b, the correlation between the bonding and bridging capabilities of the places is higher on

weekends than on weekdays. On weekdays, the correlation is higher in early morning and during the night, while the

coefficient is below 0.6 during normal working hours (i.e., 08:00–17:00). On weekends, the correlation remains rela-

tively stable and reaches the peak at time window T6 (i.e., 17:00–20:00). The result indicates that, compared with

weekdays, the bridging capability of the places on weekends, especially during the daytime, is more indicative of their

bonding capabilities. One potential explanation is that on weekends, people’s social interactions are strongly tied to
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recreational activities (e.g., shopping). Places which facilitate such purposes tend to attract many pairs or groups of

friends. Hence, places which host more people are likely to attract more friends at the same time.

4.3 | Temporal signature of the places’ bonding capabilities

For each grid cell L, there is a time series which illustrates how the bonding capability of this place changes over time. To

better understand the temporal characteristics of a place’s bonding capability, we first represent each grid cell L by this

time series in a form of vector VLðq1; q2; . . . ; q16Þ normalized by the maximum value over the sixteen time windows:

qi5
PColUs ðL; TiÞ

max 1�i�16PColUs ðL; TiÞ
(13)

We then apply an agglomerative hierarchical clustering algorithm with Ward’s linkage to group the grid cells into

clusters using Euclidian distance between vectors (Han, Pei, & Kamber, 2011; Yuan & Raubal, 2014). First, we perform

the clustering into 20 clusters several times. At the end of each run, the clusters with a very small size (i.e., less than

FIGURE 8 Place based co-locationmetrics during selected timewindows: (a–d) relative bonding capabilities of the
places; and (e–h) relative bridging capabilities of the places. The height of each bar illustrates the value of the correspond-
ing grid cell. Five colors are used in eachmap, based on the Jenks Natural Breaks Algorithm, seeDe Smith, Goodchild, and
Longley (2007) to distinguish grid cells with different values
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1% of the total number of grid cells) are removed as “outliers”. The purpose of this multi-level hierarchical clustering is

to remove small clusters with relatively unique patterns. The clustering process terminates when there is no cluster

with size smaller than the defined threshold (i.e., 1%).

By performing the multi-level hierarchical clustering over 1,423 grid cells, we group 1,386 of them into six clusters.

The remaining 37 grid cells are identified as outliers in the clustering process. Figure 10 shows the mean center (i.e.,

average values of VL of the corresponding grid cells) of each cluster. According to the results, C1 and C2 have much

higher bonding capabilities on weekdays, and they cover 26.0% and 13.7% of the grid cells, respectively. The two bell

(a) (b)

FIGURE 9 (a) Grid cells that are used in the correlation analysis (i.e., mean relative bonding capability equal or greater
than 0.01); and (b) Spearman’s rank correlation betweenNorPColUs ðL;TÞ andNorPColUr ðL; TÞ during each timewindow

FIGURE 10 Temporal signature of the places’ bonding capabilities. The x-axis of each graph denotes the timewindows,
and the y-axis denotes the average value ofVL (normalized bonding capability) of the corresponding cluster
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curves in C3 indicate that grid cells in this cluster are more attractive to friends around noon and afternoon, and the

bonding capabilities of these places are higher on weekends than on weekdays. Clusters C4 and C5 show some inter-

esting temporal patterns. The grid cells in these two clusters, especially on weekdays, have higher potentials of con-

necting friends before 08:00 and after 20:00. Cluster C6 covers 17.6% of the grid cells, of which the bonding

capabilities are higher on weekdays, and exhibit patterns similar to C2. However, the overall difference between week-

days and weekends is smaller as compared to C1 and C2.

4.4 | Relationships between bonding capability and semantics of the places

The clustering analysis and the spatial patterns illustrated in Figure 8 have shown that: (1) the bonding capability of pla-

ces could vary significantly from each other; and (2) the ability of a place to connect friends also changes over time. In

this section, we further associate these characteristics with the semantics of the places, which allow us to have a better

idea of the nature of places where friends are brought together.

To achieve this, we introduce five types of POIs,3 which are relevant to people’s daily social interactions, and ana-

lyze how they are distributed across the grid cells with different bonding capabilities and temporal signatures:

� Public commercial buildings (2,479 in total)

� Education institutes (564 in total)

� Shopping malls (283 in total)

� Sports centers (247 in total)

� Community centers & clubs (162 in total).

First, we examine the associations between place semantics and the temporal signature of the grid cells. Unlike

McKenzie, Janowicz, Gao, and Gong (2015) who investigated what temporal signatures some specific POIs exhibit, we

try to determine whether certain types of POIs are tied to specific temporal signatures. Figure 11 illustrates the

(a) (c)

(d) (e)

(b)

(f)

FIGURE 11 Cumulative share of POI by each cluster. The x-axis of each graph illustrates the cumulative number of grid
cells in the corresponding cluster (sorted bymean bonding capability in descending order). The y-axis shows the cumula-
tive percentage of POI coverage by type
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percentages of POI covered by the grid cells in the six clusters. The x-axis denotes the number of grid cells in a cluster

sorted by the mean bonding capability over the 16 time windows (in descending order). The y-axis shows the cumula-

tive percentage of POI coverage by category. As shown in Figure 11a, grid cells in C1 account for over 50% of the pub-

lic commercial buildings in Singapore. Moreover, as the number of grid cells reaches 100, the other four types of POI

start to increase very slowly, which indicates that C1 is strongly associated with public commercial buildings.

Furthermore, public commercial buildings are mainly tied to work-related activities (e.g., business meetings), which

potentially explains the high bonding capabilities of the grid cells during work hours on weekdays (Figure 10a). Since

the friendship identified in this research encompasses multiple types of interpersonal relationships (e.g., business part-

ners, family members, and other acquaintances), it is likely that during work hours on weekdays, places in C1 are shared

mainly by user pairs who maintain some kinds of work relationships, although their estimated work locations are some-

where else. Cluster C2 includes only 14.1% of the grid cells (Figure 10b). However, it covers 27% of the education

institutes in Singapore (Figure 11b). We notice that for grid cells in C2 (Figure 10b), their bonding capabilities reach the

peak during 08:00 – 11:00, while the places in C1 are attractive to friends during the entire daytime (Figure 10a). Such

differences between the two clusters are reflected by their POI coverages.

(a) (c)

(d)

(e)

(g)

(b)

(f)

FIGURE 12 (a–b) Cumulative coverage of POIs by grid cells (sorted by average bonding capability in descending order) on
weekdays andweekends; and (c–g) Q1–Q5 are groups of the grid-cells divided by 5 quantiles, i.e., Q1 includes 20% of the
most attractive grid-cells, Q2 – next 20% of grid-cells and so on. Heights of the bars represent average relative density of
POIs per grid-cell, i.e., average POI density in a group divided by overall average density of the corresponding type of POI
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Cluster C3 includes 9.1% of the grid cells in the study area (Figure 10c). However, this cluster covers 44% of the

shopping malls in Singapore (Figure 11c). It is very likely that shopping malls play an important role in connecting

friends on both weekdays and weekends. Although we find that friends on average are more likely to share urban

space on weekdays (Figure 5a), the grid cells in C3 are more attractive to friends on weekends, where human social

interactions are more related to recreational activities.

Grid cells in C4 and C5 have higher bonding capabilities before 08:00 and after 20:00 (Figures 10d, e). We find

that these two clusters cover a larger percentage of sports centers and community centers & clubs than other POI

types (Figures 11d, e). It is apparent that friends are more likely to share these places during non-work hours on week-

days. However, even on weekends, the bonding capabilities of these two clusters are higher in early morning and dur-

ing the night. One potential reason is that in Singapore, sports centers and community centers & clubs are associated

with many outdoor facilities (e.g., swimming pools, basketball courts, tennis courts). These facilities are more attractive

to friends and the general public when weather conditions (e.g., less sunshine) are better for physical and social related

activities. For grid cells in C6, the top two POI types by coverage are community centers & clubs and education insti-

tutes (Figure 11f). We believe that this cluster corresponds to the places bonding people who do not work, mainly

older (meeting at community centers & clubs) and younger (meeting at educational institutes).

To find out which places are the most attractive for friends in Singapore, we explore the overall POI coverage in a

similar way separately for weekdays and weekends. Specifically, we compute the average bonding capability of grid

cells on weekdays as well as on weekends, and sort them in descending orders. By exploring the cumulative percent-

age of POIs covered by these grid cells, we find that the overall pattern is rather similar on weekdays (Figure 12a) and

weekends (Figure 12b). In general, areas that are more attractive to friends tend to cover a larger percentage of POIs.

However, certain POI types seem to have a higher impact on bonding capability than others. In Figures 12c–g we fur-

ther compare weekdays and weekends for each type of POI separately. In particular, we divide the grid cells into five

quantiles (Q1 – Q5) and for each quantile, we compute the relative density of POIs per grid cell (i.e., average POI den-

sity in the group divided by overall average density of the corresponding type of POI). As one would expect, areas of

Education Institutes (Figure 12d) and Public Commercial Buildings (Figure 12e) are more attractive on weekdays than

on weekends (for the first two quantiles), compared to three other types of POIs that are more popular on weekends.

We also notice that Sports Centers are almost equally distributed across all five quantiles, whereas the density of

Shopping Malls in the first 20% of grid-cells is more than three times higher than average.

5 | CONCLUSIONS

Urban spaces, manifested by the streets, buildings, and various types of infrastructure, play an important role in con-

necting people and strengthening their social relations. For many years, urban planners have been pursuing better

ways of designing cities to facilitate human social interactions. Yet such goals cannot be easily achieved without a prior

knowledge of how people share urban space with each other. This research proposes a framework to gain insights into

the spatiotemporal characteristics of friends’ use of urban space. By applying the framework to a 50-day CDR dataset

in Singapore, we find that friends are more likely to share urban space than random user pairs, and they also share

more locations. On weekdays, the average co-location rate of friend pairs exhibits notable fluctuations, whereas on

weekends, the temporal variation is less obvious, suggesting that the potential of the city in connecting friends remains

relatively stable. By deriving the two place-based co-location metrics (bonding and bridging), we find that a place could

play different roles in connecting friends vs. random people (e.g., chance encounters). On weekdays, the bonding and

bridging capabilities of the places show different spatial patterns. However, the two indicators become highly corre-

lated on weekends, indicating that places which host more people tend to attract more friends at the same time. The

comparisons reveal two interesting aspects of social dynamics in the urban environment. On weekdays, people’s social

interactions do not always arise at places where crowds congregate (e.g., metro stations). On weekends, the places’

abilities to connect friends and chance encounters become more compatible, suggesting similar destination choices

among the social contacts.
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A hierarchical clustering algorithm is then applied to examine how the bonding capabilities of places change over

time. We derive several clusters with distinctive temporal patterns and associate them with five types of POIs. The

result suggests that the temporal signature of bonding capability is strongly related to the semantics of the places. Pla-

ces which are dominated by: (1) shopping malls, (2) education institutes, (3) public commercial buildings, (4) community

centers & clubs, (5) sports centers show distinctive temporal patterns. Finally, we investigate which places are more

attractive to friends. The result suggests that, in general, the density of POIs increases as places become more attrac-

tive. However, by further breaking down the POIs, we find that certain POI types (e.g., shopping malls) tend to have a

much higher impact on bonding capability than others (e.g., sports centers).

A cohesive city is built upon healthy interpersonal relationships. Such relationships can be better nurtured within a

vibrant and livable urban environment. We believe our research could benefit urban planning and social cohesion in

several ways. First, the metrics derived in this study enable urban planners to better evaluate the social roles of various

places in a city, which leads to better adjustment and improvement of urban infrastructures. Second, the association

between bonding capability and POIs could help decision-makers anticipate the social effect of a new facility (e.g.,

community center) being built. Moreover, the social roles of places and their diurnal patterns could help merchants

come up with business strategies (e.g., dining promotions for friends, taxi sharing services) which not only boost their

profits, but also benefit the general public.

This research has several limitations. First, CDR data are passively generated during certain types of cell phone

communications. These data capture partial aspects of human activity patterns, which lead to an underestimate of the

co-location rate of user pairs. Second, the grid-based method does not consider the neighborhood effects, which

means that friend pairs who appear at nearby (adjacent) grid cells are not taken into account. Third, the social network

extracted in this study does not include the dyads who did not call each other during the study period, or who were

subscribers of different cellular operators. A more comprehensive view of the social roles of urban spaces and places

can be obtained by applying the framework to other mobile phone datasets or location-based social networks (LBSNs).

Also, how the results are affected by the defined spatiotemporal resolutions is worth further investigation. Neverthe-

less, we believe this analytical framework is a new way of integrating human mobility and social network analysis in

GIScience, and some of the current restrictions will be removed as we move forward and collect more detailed data

about human behavior.
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NOTES
1 By the time the data were collected, Singapore had about 7.38 million mobile subscribers, representing a penetration rate of
145.5%.

2 Planning areas, also known as DGPs, are the primary census divisions of Singapore created by the Urban Redevelopment
Authority (URA). There are a total of 55 planning areas in Singapore with each served by a town center and several neigh-
borhood commercial/shopping centers (https://www.ura.gov.sg/uol/master-plan/Contacts/View-Planning-Boundaries).

3 The POI dataset was acquired from the Singapore Land Authority (SLA). Here we only chose five major types of POIs that
are most relevant to human social interactions. Other types, such as Auto Bank (ATM), Fire Station, Hotel, and Medical &
Health, are not included.
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