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ABSTRACT
Understanding urban functions and their relationships with human
activities has great implications for smart and sustainable urban devel-
opment. In this study, we present a novel approach to uncovering
urban functions by aggregating human activities inferred frommobile
phone positioning and social media data. First, the homes and work-
places (of travelers) are estimated frommobile phone positioning data
to annotate the activities conducted at these locations. The remaining
activities (such as shopping, schooling, transportation, recreation and
entertainment) are labeled using a hidden Markov model with social
knowledge learned from social media check-in data over a lengthy
period. By aggregating identified human activities, hourly urban func-
tions are inferred, and the diurnal dynamics of those functions are
revealed. An empirical analysis was conducted for the case of
Shenzhen, China. The results indicate that the proposed approach
can capture citywide dynamics of both human activities and urban
functions. It also suggests that although many urban areas have been
officially labeled with a single land-use type, they may provide differ-
ent functions over time depending on the types and range of human
activities. The study demonstrates that combining different data on
human activities could yield an improved understanding of urban
functions, which would benefit short-term urban decision-making
and long-term urban policy making.
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1. Introduction

Urban spaces, where citizens live, move and engage in different activities, are socialized and
dynamic. Urban functions are defined as the recognized human uses of urban space, such as
residential areas, forests and commercial zones. These functions are important metrics for
urban planning and management (Rodrigue et al. 2013). However, urban functions are
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recognized as macro-static and micro-dynamic (Ratti et al. 2006, Batty et al. 2012, Zhong et al.
2014). From a long-term perspective, urban land is primarily designed to support one type of
human activity, e.g. working, shopping, recreation etc. (Liu et al. 2012, Crooks et al. 2015). In a
short-term view, urban land parcels may provide different functions hour by hour, as they
actually serve a variety of human activities through the day (Tu et al. 2016a). For example, East
Asian cities have mixed residential–commercial areas used for housing in the evening but for
business during the day. Understanding the detailed diurnal dynamics of these urban func-
tions benefits many urban applications, such as managing traffic congestion, improving
public services and promoting smart urban planning (Ahas et al., 2015).

Numerous approaches have been developed to monitor urban land use over long
time periods. Field observations and interview questionnaires can produce land-use
maps, but they are costly and time consuming (Jiang et al. 2012). Remote sensing is
an alternative methodology for capturing the physical characteristics of land use (Gong
and Howarth 1990, Hu and Wang 2013). It relies on the image classification process.
Although periodic satellite images, such as those from Landsat and SPOT, have been
used to monitor land-use change for some time, some challenges remain. One is the lack
of social characteristics of urban land (Pei et al. 2014). Commercial zones, educational
areas and recreational locations cannot be easily classified from satellite images without
additional geographic information. Another challenge is presented by the diurnal
dynamic of urban functions. Although many outcomes have been reached by inferring
long-term urban land use, it is necessary to investigate urban land’s function and diurnal
dynamic to more deeply understand daily urban issues. The main challenge is to acquire
urban function snapshots that have a high temporal resolution.

In the era of big data, massive human-tracking data that record individuals’ positions
and times are available (Yue et al. 2014, An et al. 2015, Li 2017). These include data from
mobile phones (Cao et al. 2016, Yue et al. 2016, Cao et al. 2017), social media (Longley et al.
2015), vehicle GPS (Tang et al. 2016, Tu et al. 2016b, Zhou et al. 2017) etc. These data
contain valuable knowledge about the human use of urban space and therefore provide
an alternative approach through which urban function can be inferred. For example,
taking mobile phone data as a proxy of human activities, Pei et al. (2014) developed a
clustering method to classify urban areas by residential, business, commercial, open space
and other use. Using social media, trajectory and traffic data, Crooks et al. (2015) presented
a bottom-up approach to infer the functions of buildings, streets and neighborhoods.
These advanced studies support the feasibility of uncovering urban function through (big)
data and leave a gap between massive human-tracking data and urban diurnal dynamics.

Each type of human-tracking data has its own shortcomings. Mobile phone data
suffer from the lack of semantic information (Calabrese et al. 2014). Social media data are
sparse in space and time (Huang and Wong 2016). Alone, neither of them is able to
provide high temporal resolution for urban functions. To accomplish this, multisourced
human-tracking data should be fused (Steiger et al. 2015). The aim of this article is to
reveal urban functions and their diurnal dynamics by combining mobile phone position-
ing data with social media check-in data. Unlike the indirect land-use inference
approach, this method follows a ‘data-activity-function’ stream to investigate temporally
detailed urban functions from the people who define urban spaces by their daily
activities. Citywide human activities are first extracted by integrating mobile phone
positioning data with social media check-in data. Homes and workplaces are extracted
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from mobile phone positioning data by simple spatial–temporal rules used to recognize
in-home and working activities. Other activities (such as shopping, schooling, transpor-
tation, recreation and entertainment) are annotated with an improved hidden Markov
model (HMM) that uses social knowledge learned from long-term social media check-in
data. By aggregating identified human activities, hourly urban functions are inferred and
the diurnal dynamics of those functions are revealed. An experiment in Shenzhen, China,
suggests that many urban cells provide different functions at different hours in a day
despite their official designation under one type of land use.

The main contributions of this article lie in two aspects. First, a big data-driven
framework is developed for understanding urban dynamics, which bridges the gap
between raw tracking data, human activities and the diurnal patterns of urban function.
The article also sheds lights on the data fusion of multisourced human-tracking data for
human and urban studies. Second, urban functions and their diurnal dynamics as
defined by human activities are observed for the first time. The results demonstrate
that urban functions are not only spatially distributed but also change hour by hour. This
dynamic knowledge about a city will benefit urban decision-making processes, such as
traffic congestion management, smart urban planning and urban governance.

The remainder of this paper is organized as follows: the next section reviews the related
literature in the domain of mobile phone data analysis, social media data analysis and urban
dynamics. Section 3 introduces the fundamental design, including the study area and
dataset used. Section 4 describes the proposed data fusion approach. Section 5 reports
the experiment and the analysis of the results. Finally, we conclude the paper in Section 6.

2. Literature review

This section reviews related studies on mobile phone data analysis, social media data
analysis and urban dynamics.

2.1. Mobile phone data analysis

Mobile phone data are generated when phones connect to mobile communication net-
works. Because of the high penetration rate and carry-on usage of mobile devices, mobile
phone data are of great value to human and urban research domains (Chirag and Storpera
2015), such as human mobility (Gonzalez et al. 2008, Song et al. 2010, Calabrese et al. 2013,
Chen et al. 2016), mobility landscape (Ratti et al. 2006) and urban spatial structure (Louail
et al. 2014).

One strand of research usingmobile phone data focuses on human activity (Xu et al. 2016).
As mobile phones are always at hand, mobile phone data are recognized as good proxies of
people’s activities (Tranos and Nijkamp 2015). The position and time of implied human
activities can be found through massive mobile phone data. Using call detail records
(CDRs), Yuan et al. (2012) extrapolated travel activities and examined activity space in
Harbin, China. Xu et al. (2016) identified anchor points (i.e. homes) from mobile phone
positioning data and then quantified home-based mobility patterns. These studies yield
insights into important aspects of mobile phone data-driven human activities.

However, the absence of semantic content in mobile phone data hampers deeper
analysis. Information on types of activities cannot be directly obtained from mobile
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phone data because of their low spatial resolution (usually more than 200 m).
Understanding citywide human activities and the urban dynamics behind them face
great challenges. Although many approaches have been developed for trajectory
semantic enrichment, i.e. Bayes activity inferences (Gong et al. 2016) and transportation
segmentation (Shin et al. 2015), labeling activity information using mobile phone data is
not easy. Recently, combining mobile phone data with urban land-use data, Widhalm
et al. (2015) developed a probability approach for extracting daily activities (including in-
home activities, working, shopping and leisure) from mobile phone data and analyzed
citywide activity patterns. Fusing mobile phone data with data from other sources is
another promising approach. Diao et al. (2016) integrated 4 months of mobile phone
data and household travel surveys to infer activity information to support a longitudinal
investigation of individual activities in Boston. These studies indicate the promise of
mobile phone data for collecting activities citywide.

Another research stream focuses on urban land use. Recognizing the similarity of
calling patterns in one type of land use, Pei et al. (2014) developed a semi-supervised
fuzzy c-means clustering method to classify urban land use and achieved a detection
rate of 58.03%. Using time series phone call records, Lenormand et al. (2015) presented a
functional network approach to automatically detect four types of land use (residential,
business, logistics/industrial and nightlife). These studies rely on mobile phone data over
a lengthy period to measure the similarity of urban space and thus produce a static
land-use map. However, a direct linkage between mobile phone data, human activity
and urban function dynamics is required. Unlike Diao et al. (2016), in this paper, we
fused mobile phone positioning data instead of calls, messaging and web-browsing
events with social media check-in data to infer citywide human activities. Social activity
knowledge was transferred from social media check-in data to potential human activities
to enrich semantic information regarding activities. Furthermore, the diurnal patterns of
urban functions portrayed by the obtained citywide human activities were explored.

2.2. Social media data analysis

Social media data are generated when people post, comment or check-in on social
networking websites, such as Twitter, Foursquare and Weibo (Steiger et al. 2015). Social
media data contain a great deal of semantic information, including texts, pictures, voices,
check-in records etc. In particular, a large amount of social media data are geo-referenced
using location-awareness technologies (e.g. GPS, WiFi localization, Bluetooth localization
etc.) and therefore provide important opportunities to research society, demography and
cities (Wu et al. 2014, Croitoru et al. 2015, Crooks et al. 2015, Longley et al. 2015, Tsou 2015,
Zhou et al. 2015). However, biases exist in social media data. For example, the penetration
and usage of social media are different for various social media user groups. By using well-
designed data filters, long-term social media data can reduce this disadvantage (Longley
et al. 2015). Social media data are still able to capture aggregated patterns of human
activities, especially social activities (Huang and Wong 2016).

Social media data support studies on human social activity. As human behaviors have
their own consistency (Gonzalez et al. 2008), meaningful places (e.g. office, shopping
places and tourism destinations) can be mined from long-term social media data.
Combining individual Twitter data and land-use data, Huang et al. (2014) developed
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spatial–temporal clustering methods to infer the locations most visited by individuals on
the city-block level and then labeled the daily human activities. Furthermore, based on
the home locations, Huang and Wong (2016) inferred the in-home and work activities of
social media users. They further linked socioeconomic status and Twitter user groups via
urban space by fusing American Community Survey data and Twitter data. Using the 15
million check-in records collected over 1 year in Shanghai, China, Wu et al. (2014)
extracted citywide transition activities (or travel demands) and investigated the law of
related human movements. These studies verified the valuable knowledge about human
social activities behind massive social media data.

Social media data also have the potential to infer urban land use (Crooks et al. 2015).
By considering the similarity of tweeting activities in urban regions, Frías-Martnez and
Frías-Martnez (2014) developed an unsupervised learning method to automatically
differentiate land uses (including business, residential, night life, leisure, weekend and
industrial) in urban areas. Zhan et al. (2014) presented an unsupervised clustering
method and a supervised learning method to infer urban land use by utilizing a large
amount of social media check-in data. Zhou and Zhang (2016) mined Twitter and
Foursquare data to extract six types of human activities and detected activity hotspots
and their citywide dynamics. These achievements reveal the hidden linkage between
human activity patterns and underlying urban form (Crooks et al. 2015). They also
provide an alternative approach to capture static land use. However, dynamic patterns
of urban functions should be further investigated. Furthermore, by combining social
media data with other source data, such as data from geographic information system
(GIS), mobile phones and travel surveys, more detailed urban function information can
be mined from social media content, which can facilitate human and urban research
(Steiger et al. 2015).

2.3. Urban dynamics

Urban dynamics refers to human movements and activities over space and time, as
reflected in spatial interactions and changes in urban spatial structure through time
(Batty 2009, 2010, Grinberger and Shoval 2015). Human activities play an important role
in the manifestation of urban dynamics. Recently, the proliferation of spatial–temporal
data through technology such as mobile phone data and social media data has opened
a new horizon in understanding human movements and activities in space and time.

Spatial dynamics of human activity and land use in cities have been studied (Tranos
and Nijkamp 2015). Using long-term CDRs, spatial variations in the intensity of collective
human activities have been observed (Sagl et al. 2014). Reades et al. (2009) proposed an
eigen-decomposition method to identify recurring patterns of mobile phone usage and
then bridge the relationship between them with residential and business areas. From
the temporal view, MIT SENSable City Lab portrayed the urban mobility landscape using
massive anonymous mobile phone data (Ratti et al. 2006). The intensity of human
activities and their changes across space and time were explored. Zhong et al. (2014)
used 3-year smart card data to reveal the yearly dynamic in the spatial structure of city
hubs, centers and borders in Singapore. These studies address the feasibility of the
discovery of urban function dynamics but fail to fill a diurnal pattern gap.
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Recently, Ahas et al. (2015) detected spatial and temporal differences in everyday
activities in cities. Following the aggregated rhythm, social time (the time use difference)
from human activities was delineated instead of the standard solar time. Their results
suggest global temporal dynamics in people’s daily lives that cannot be ignored. They
also imply that urban lands have different functions at different hours. In this study, we
move forward to investigate urban functions and their diurnal dynamics via collective
human activities by coupling mobile phone data and social media data. This will
enhance our understanding of human activities in the city and the associated urban
functions and diurnal patterns.

3. Study area and dataset

3.1. Study area

Shenzhen is China’s first special economic zone with a resident population of 12 million
and a mobile population of 4 million as of 2012. Its total area covers 1996 square
kilometers (Shenzhen Statistical Yearbook 2013). It has six administrative districts,
shown in Figure 1. South Shenzhen, adjacent to Hong Kong, contains the downtown
(Futian and Luhu) and high-technology zones (Nanshan). North Shenzhen, including
Baoan and northern Longgang, is a developing area with factories, lakes and farms. East
Shenzhen, including Yantian and eastern Longgang, has an international port and a
natural reserve area with country parks and beaches.

3.2. Dataset

A mobile phone positioning dataset is provided by a major Shenzhen cellular operator
that has approximately 5689 cell towers in the city. The dataset contains the positions of
9.2 million phone users (approximately 57.5% of the total population) for a workday in
March 2012. The positions of mobile phone users were recorded at half-hour intervals;
thus, there are 48 records for each person. Each record has four fields, including a user ID

Figure 1. Shenzhen and its six administrative districts.
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(i), a time stamp (t), longitude (xit) and latitude (yit). Spatial resolution is restricted at the
cell tower level, which is approximately 100–500 m. Table 1 shows an example of an
individual’s records. One row is a positioning record, and no semantic information can
be directly obtained. Figure 2(a) illustrates the distribution of records. Following Xu’s
approach (Xu et al. 2016), we divided the study area into a 500-m grid. Ultimately, 2498
grid cells (624.5 km2) contain at least one cell tower, covering 73.3% of the built-up area
(851 km2) (China City Statistical Yearbook 2013).

The social media dataset in this study includes check-in records reporting people’s
activities at points-of-intersects (POIs) with a time stamp (Table 2). It provides semanti-
cally rich information about human activities in the city, as the POI suggests what people
do in a particular place. The dataset was crawled from Weibo, the largest microblog
service provider in China with an open application programming interface (API), and
covered the year 2013. Similar to Longley et al. (2015), three data filters were applied to
avoid shortcomings in the social media check-in data. (1) Users with more than 1000
records in a year are not used. (2) Users with less than three records in a year are
omitted. (3) Only two consecutive check-in records with an interval of 1–12 h were used.
Finally, 5680,724 check-in records from approximately 520,000 Sina Weibo users were
collected and stored in a geodatabase for further processing. Figure 2(b) displays the
distribution of Sina Weibo check-in records. It should be noted that we aggregated this
dataset to the same grids used for mobile phone positioning data, which suggests that

Table 1. Examples of mobile phone positioning data (the position is marked for privacy).
User ID Longitude Latitude Time (hh:mm:ss)

110103203112413 113.93* 22.52* 07:25:00
110103203112413 113.88* 22.57* 07:55:00
110103203112413 113.88* 22.57* 08:26:00
110103203112413 113.88* 22.57* 08:56:00
– – – –
110103203112413 113.93* 22.52* 23:28:00

Figure 2. Distribution of human-tracking data. (a) Mobile phone positioning data and (b) Sina Weibo
check-in data.

Table 2. Examples of social media check-in data (the position is marked for privacy).
User ID Longitude Latitude Time Check-in places

75500001 113.93* 22.52* 28/3/2013 09:30:00 Vanke city park
7550042 113.78* 22.43* 15/4/2013 16:55:00 Tencent
– – – – –
7557746 113.73* 22.54* 22/11/2013 23:18:00 Queen club
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the data have a similar spatial distribution; the density of mobile phone data and social
check-in records are generally higher in the southern part of Shenzhen.

In addition to the abovementioned data, additional GIS datasets, including locations
of cell towers, spatial data about water and forests etc., are also used in this study.

4. Methodology

The presented approach infers urban functions and their diurnal dynamics by fusing
massive mobile phone positioning data and social media check-in data. Following a
‘data → activity→ function’ logic, citywide human activities are first extracted, and urban
functions are then discovered. Before the introduction of the detailed methodology,
some useful definitions are given.

Definition 1: Activities denote the common activities associated with any person in a
day (Zhong et al. 2014), such as housekeeping, working and other social actions to meet
human needs. To define an activity a, six tuples are necessary, including user ID (i), start
time (tsi), duration (tdi), longitude (xi), latitude (yi) and activity type (ai).

To filter out meaningless activities, the duration must be above a threshold, tdmin. In
this study, we set 1 h because the time granularity of mobile phone positioning data is
30 min. In other words, at least three sequential mobile phone records are needed to
verify a possible activity in a place. This is reasonable because the durations of common
human activities (e.g. in-home, working, schooling etc.) are more than 1 h.

Definition 2: Social activities refer to nonhome and nonwork activities for human
needs. In this research examining social media check-in data, five daily social activities
are considered, i.e. S = {atransportation, aschooling, ashopping, arecreation, aentertainment}, where AS

denotes the set of social activities.

Here, we must note that transportation activity does not refer to travel within the city
but rather to air travel, railway travel and long-distance travel by bus. Recreation denotes
leisure activities in outdoor places, such as parks and beaches. Entertainment refers to
leisure in indoor spaces, e.g. game centers, bars etc. We label social activity from mobile
phone positioning data with the knowledge discovered from social media check-in data.

Definition 3: Urban functions denote people’s common usage of urban space, which
include residential, working, commercial or educational functions. Generally, urban
functions are labeled the dominant human activities in the geographical space.

A data fusion framework is presented to discover urban functions by extracting
citywide human activities and labeling functions with them, as Figure 3 illustrates.
Potential human activities are first detected from highly penetrated time-sequential
mobile phone positioning data. In-home and working activities are recognized using
temporal rules. Then, by incorporating learned knowledge from long-term social media
check-in data, the remaining social activities are labeled with an improved HMM. After
that, a geodatabase containing citywide human activities is built. Finally, urban functions

8 W. TU ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

en
ne

ss
ee

, K
no

xv
ill

e]
 a

t 2
0:

01
 0

5 
A

ug
us

t 2
01

7 



are inferred from aggregated local human activities, and the diurnal dynamics are
analyzed using hourly urban functions.

4.1. Activity detection

Activity detection extracts potential activities from massive time-sequential mobile
phone positioning data. Mobile phone records of an individual are first sorted by time
and connected as a spatial–temporal trajectory (Figure 4(a)). Then, if two consecutive
records are at the same location, in other words, the person does not move, a potential
activity is found, such as p1–p2, p6–p7, p9–p11 in Figure 4(b).

Spatial uncertainty exists in mobile phone positioning data because of the low spatial
accuracy of cell-tower-based location technology. Consecutive records will jump between
adjacent cell towers (p3 in Figure 4(a–c)). Hence, potential activities could be fragmented
and shortened. To overcome this shortcoming, a threshold d is used to filter false moves: if
the distance from the current point to the previous location is less than d, the move can be
omitted and the current point can be merged into previous potential points of activity. As
Figure 4(c) shows, the record p3 can be merged into previous potential activity (p1–p2).
After processing all mobile phone positioning data person by person, a citywide database
of potential human activities without type information is constructed.

4.2. Recognition of home and work activities

In-home activities and working are two main daily behaviors of adult human beings
(Schneider et al. 2013). The regularity of mobile phone positioning data indicates
information on homes and workplace (Xu et al. 2016). Considering the rhythms of
human beings, we label a person’s in-home and working activities using the following
rules.

Figure 3. The analytical framework of the presented approach.
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● Home rule: For an individual, if the total duration in a place occupies more than
half of the early morning period [0:00–6:00], this place will be defined as home. All
activities located at the home of this person are defined as in-home activities.

● Workplace rule: If the total duration in a place occupies more than half of the daily
working period [9:00–12:00] and [14:00–17:00], this place will be defined as the
workplace. All activities located in the workplace of this person are defined as
working activities.

In total, we labeled the homes of 91.9% of mobile users and the workplaces of 64.8%
of users and therefore annotated 75.7% of the potential activities.

4.3. Learning social activity knowledge from social media data

Social media check-in data contain the spatial–temporal characteristics of human activ-
ities. Within the timeline of social media check-in data, the transition between activities
is also implied. We mined the social media check-in data of 1 year to gain knowledge
about social activities. First, Weibo check-in data are labeled as one type of activity
according to their checked POIs in Table 3. Then, following the check-in sequence of
Weibo users, the probability of daily activity transition was generated. Figure 5 displays
the distance and interval distribution of the consecutive potential human activities
described in Section 4.1 and those of the Sina Weibo check-in data. This figure indicates
that both datasets show a similar decay pattern except at the 2-h interval. Therefore, it is
reasonable to transfer social activities knowledge from Sina Weibo check-in data to
mobile phone positioning data. Table 4 reports the daily activity transition matrix, which
seems skewed toward social activities. As 75.8% of potential activities were labeled in-
home and working, this information is helpful for annotating the remaining activity.

The normal daily activity transition matrix has been refined in space and time to improve
knowledge about social activity. By considering the spatial heterogeneity of human

Figure 4. Activity detection with mobile phone positioning data.
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activities, we discovered the spatial-dependent activity transition matrix (Figure 6).
According to the location of POI, the number of a type of activity a in a grid cell i, Ni

a, is
calculated. Following an individual’s timeline, the number of transitions between two types

of activities (activity a to activity b) and fromone place to another (i–j), Nij
ab, is also calculated.

By dividingNi
a by the total number of activities in grid i,

P
a2A

Ni
a, the generation probability of

one type of activity a at grid i, p(a|i), is calculated as Equation (1). By dividing Nij
ab by the total

number of activity transitions between grid i and j, Nij
ab, the transition probability between

activities, pðabjijÞ, is also calculated as Equation (2).

p ajið Þ ¼ Ni
aP

a2A Ni
a

(1)

Table 3. Labeling for social media check-in information types.
Check-in POIs Activity type

Home, residential locations In-home
Office building, government, company, industrial park, hospital, bank, post office Working
Shopping mall, supermarket, store Shopping
Airport, railway station, long-distance bus station, customs ports Transportation
University, primary school, high school, scientific research institution, library Schooling
Park, gym, beach, soccer field, zoo, museum, scenic spots Recreation
Chinese/Western restaurant, tea room, coffee shop, diner, nightclub, pub, bar, theater, beauty salon,
Karaoke, bath massage, Internet bar, arcade, temple

Entertainment

POI: Points-of-intersects.

Figure 5. Distribution of potential human activities and consecutive Sina Weibo check-in data.

Table 4. Daily activity transition matrix from social media data.

Activity

Second activity

In-home Working Shopping Transportation Schooling Recreation Entertainment

First activity In-home 0.20 0.16 0.15 0.11 0.11 0.12 0.14
Working 0.16 0.18 0.14 0.13 0.12 0.13 0.14
Shopping 0.15 0.13 0.18 0.11 0.09 0.13 0.16
Transportation 0.11 0.14 0.13 0.31 0.09 0.14 0.11
Schooling 0.13 0.15 0.12 0.11 0.42 0.14 0.12
Recreation 0.12 0.13 0.14 0.13 0.10 0.22 0.13
Entertainment 0.14 0.12 0.15 0.11 0.08 0.12 0.21

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

en
ne

ss
ee

, K
no

xv
ill

e]
 a

t 2
0:

01
 0

5 
A

ug
us

t 2
01

7 



p abjijð Þ ¼ Nij
abP

a2A;b2A N
ij
ab

(2)

Considering the temporal rhythm of human activities, we divided the day into three
intervals T1 = [0:00–6:00), T2 = [6:00–17:00), T3 = [17:00–24:00). Then, the time-depen-
dent activity transition probabilities were calculated as Equation (3), where p, q denotes
an interval, and p is no later than q. Thus, a spatial–temporal activity transition matrix
was generated and used later for social activity labeling.

p abjijpqð Þ ¼ Nijpq
abP

a2A;b2A N
ijpq
ab

(3)

4.4. Labeling social activities with the HMM

The HMM could recognize unobserved (hidden) states from observed states (Rabiner 1989,
Eddy 2004). We used the HMM to infer information about the remaining activity types based
on prior knowledge of in-home and work activities (in Section 4.2) and the spatial–temporal
activity transition knowledge from social media check-in data (in Section 4.3).

In the HMM, each unobserved state is associated with a probability distribution.
Transitions among the hidden states are fit with a set of transition probabilities. In a specific
state, an observation can be generated by the associated probability distribution. However,
the hidden state is not directly observable to an external observer. Formally, there are five
components in the HMM, HMM ¼ H;O;A; B; πf g.

● ¼ h1; h2; . . . ; hNð Þ is the set of hidden states and N is the number of hidden states
in the model. Here, we denote activities as hidden states.

● O ¼ o1; o2; . . . ; oMð Þ is the set of observations and M is the number of distinct
observation symbols per state. In this study, we denote the activity locations as the
observation O. Therefore, M is the number of distinct grids.

● A ¼ aij
� �

is the state transition probability distribution, aij ¼ prfatþ1 ¼ Sjjat ¼ Sig,
1 � i; j � N, where at refers to the state at time t.

Figure 6. Learning activity knowledge from social media data (a, b, c denote types of activities).
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● B ¼ bi kð Þf g is the observation probability distribution in each of the states,
bi kð Þ ¼ prfvk at tjqt ¼ Sjg, 1 � j � N, 1 � k � M.

● π ¼ πif g is the initial state distribution, πi ¼ pr q1 ¼ Sif g, 1 � i � N.

Therefore, for a series of observations, O ¼ o1; o2; . . . ; oTð Þ at time T, where each
observation oi 2 T , 1 � i � T , the HMM finds the most likely hidden state sequence
Q ¼ q1; q2; . . . ; qTð Þ, where qi 2 H, 1 � i � T .

Figure 7 presents the adoption of the HMM for social activity labeling. The hidden
states refer to the activity set. The observation refers to the activity location. The transition
between hidden states corresponds to the transition between consecutive activities as a
person moves in the city. The observation probability denotes the spatial distribution of a
type of activity. The initial state is a person’s first activity in a day. When the first potential
activity is detected as an in-home or working, the initial state is known. Otherwise, it is
randomly selected from the activity set and determined by the following Viterbi algorithm.

The Viterbi algorithm (Viterbi 1967) is used to search the most likely activity sequence
A ¼ a1; a2; . . . ; aTð Þ for a given sequence of potential activity in Section 4.1. A Viterbi
variable is defined as

γtþ1 jð Þ ¼ max
i

γt ið Þ � aij
� �

� bj Otþ1ð Þ; 1 � t � T (4)

where γt ið Þ is the highest probability along a single potential activity sequence at state t,
aij is the state transition probability from i to j, and bj Otþ1ð Þ is the observation prob-
ability at state j. To obtain the most likely social activity, μtþ1 jð Þ is defined as

γtþ1 jð Þ ¼ argmax γt ið Þ � aij
� �

; 1 � t � T (5)

Figure 7. Labeling social activities in the hidden Markov model.
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It should be noted that the ordinary HMM must be improved for the variations in human
activities. The probability of Equation (4) and (5) approaches the spatial–temporal
activity transition identified in Section 4.3 such that the temporal fluctuation effect of
human activity can be alleviated, and the obtained human activities are more reliable.

4.5. Inferring urban functions

Using citywide human activities, the functions of each urban cell can be inferred. First,
the proportions of seven types of activities are calculated as variables to characterize
urban cells. The proportion of one activity pa in a cell is calculated as Equation (6), where
Na is the percentage of a type of activity a and A is the activity set. Then, urban cells are
classified with a hierarchical cluster analysis (Smith and Dubes 1980). Next, according to
the average proportions of the seven types of activities, we set the urban cells’ urban
functions, including the residential function (RF), industrial function (IF), commercial
function (CF), educational function (EDF), transportation function (TF), recreational func-
tion (REF), entertainment function (ENF) and mixed function (MF), with the dominant
activity. Using hourly human activity information, spatial–temporal high-resolution
urban functions are obtained, allowing their diurnal dynamics to be analyzed. To
investigate the change in the diversity of urban functions, their entropies are calculated
in Equation (7), where pi is the percentage of urban functions i and F is the function set.

pa ¼ NaP
a2A Na

(6)

E ¼
X
i2F

�pi log pi (7)

5. Results and analysis

Massive mobile phone positioning data and Sina Weibo check-in data in Section 3 were
combined by using a developed program with the Arc Engine 10.3 application program-
ming interface. Urban functions were inferred with the help of the citywide human
activities database. This section reports the results of human activities and the diurnal
dynamics of urban functions.

5.1. Human activities

In total, 31,669,042 activities were contributed by 9.2 million persons in Shenzhen after
fusing mobile phone positioning data and Sina Weibo check-in data. On average, one
person conducts 3.41 activities in a day. Table 5 reports the summary of human
activities. In-home and working activities are the main daily human activities in the
city. There are 14,470,460 in-home activities and 10,459,657 working activities, which
account for approximately 45.7% and 33.0% of total activities, respectively. Social
activities constitute the small remainder. The most frequent social activity is entertain-
ment (2408,597, approximately 7.6% of daily activities), while the least frequent social
activity is schooling (872,231, approximately 2.8% of daily activities).
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The activity results were first validated using the available population data. A correla-
tion analysis has been conducted for in-home activities at night and the population within
the traffic analysis zone reported by the Shenzhen Yearbook 2013. The Pearson correlation
coefficient is 0.92, which indicates that the analyses are significantly correlated with a
confidence level p ¼ 0:01. Therefore, the count for in-home activities is credible.

To further validate the results, we compared the activity ratios with those derived
from the 2010 Shenzhen household travel survey. The comparison indicates these ratios
match well for transportation, shopping and recreation activities, with a gap less than
1.0%. The gap for in-home, working, schooling and entertainment activities appears
slightly larger, which could be for following reasons. One is that the travel survey focuses
less on the mobile population, which contributes less to schooling but more to working.
The second reason is that the travel survey does not investigate entertainment activity.
The third reason is that students in primary and middle school are forbidden to access
mobile phones. Because their schooling activities are not detected, the identified school-
ing activity is lower than that obtained in the travel survey.

Citywide human activities have a significant temporal rhythm. Figure 8(a) displays the
fluctuation of in-home and working activities. The number of in-home activities reaches
its peak of 7.82 million in the early morning (3:00), falls to 2.53 million in the afternoon
(15:00) and recovers to near 6.64 million at midnight (23:00). Working activities show a
reverse trend, beginning with only 0.54 million in the early morning, rising to a peak at
noon (4.47 million at 15:00) and then declining to less than 2.0 million at night.

Social activities also display a typical temporal wave. In total, 6738,923 social activities are
conducted each day. As with working activities, social activities begin the lowest in the early
morning (0.22 million at 4:00), reach their first peak in the morning (1.05 million at 10:00)
and their second peak at night (1.85 million at 21:00), as Figure 7(a) shows. However, social
activities display different rhythms. Figure 8(b) shows the fluctuation of all five types of
social activities, demonstrating that entertainment activities have two peaks, one at morn-
ing (10:00) and the other at night (22:00). Transportation reaches its first maximum in the
morning and its second peak value at night. The remaining four social activities have only
one peak. Both shopping and recreation reach their peaks at night and fall in the early
morning. Schooling is quite low in the early morning and increases in the day.

The composition of activities also varies with the time of day. Figure 8(c) displays the
hourly activity percentages, suggesting that the proportions of in-home and working
activities are larger than 75% at any time of day. Social activities account for approxi-
mately 12% of the morning and afternoon. However, they account for 21% at 20:00 and
reach their peak at 21:00. This fluctuation suggests different functions provided by urban
land at different times of day.

Table 5. Summary of daily activities in Shenzhen, China.

Activities In-home Working

Social activity

Transportation Schooling Shopping Recreation Entertainment

Number 14,470,460 10,459,657 1228,703 872,231 1428,106 801,288 2408,597
Ratio 45.7% 33.0% 3.9% 2.8% 4.5% 2.5% 7.6%
Ratio in Shenzhen
household travel
survey 2010

42.85% 34.32% 2.96% 4.79% 4.13% 2.52% –
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(a)

(b)

(c)

(a)

(b)

Figure 8. The fluctuation of daily human activities. (a) Human activity per hour, (b) social activity per
hour and (c) the proportions of human activities throughout the day.
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Figure 9 shows the spatial distribution of human activities. In-home activities are
widely distributed in the city (Figure 9(a)), appearing in many urban cells and spatially
aggregating in many places, such as downtown and western and central Shenzhen.
Unlike in-home activities, working activities occur with the highest density in the down-
town area, which is the central business district with many tall buildings (Figure 9(b)).
The density of working activities declines from south to north, although northern
Shenzhen is an industrial area with low-floor factories and farms. Five types of social
activities are also scattered through the city but occur relatively less frequently in most
spatial cells, occurring at a high density in only few cells. For example, cells with high-
density shopping activities are located where there are shopping centers (Figure 9(c)).

(d)(c)

(b)(a)

(e) (f)

(g)

Figure 9. Spatial distribution of human activities: (a) In-home, (b) working, (c) shopping, (d) school-
ing, (e) transportation, (f) recreation and (g) entertainment.
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Cells of high-density schooling activities have universities and technology institutes,
among others (Figure 9(d)). This distribution suggests an even urban function
distribution.

5.2. Urban function dynamics

5.2.1. Results for urban functions
Using daily human activity information, 2498 urban cells are classified into 8 clusters
using the proportions of human activities, as described in Section 4.5. Ultimately, eight
types of clusters are obtained. Table 6 describes the average proportions of human
activities in each cluster. By comparing the global mean proportion of human activity,
we classified urban cells into eight functions: RFs with 0.501 in-home activities; IFs with
0.501 working activities; CFs with 0.251 shopping activities, TFs with 0.211 transportation
activities; EDFs with 0.176 schooling activities; REFs with 0.244 recreation activities; ENF
with 0.318 entertainment activities and MF with 0.211 in-home, 0.374 working and 0.415
social activities. This indicates that most human activities are mixed in all types of urban
functional cells because of their fragmented use in this city.

Table 7 reports the summary of urban cells with functions and demonstrates that RF
and IF are the main functions provided by this city. Many cells feature RF (1438 cells) and
IF (409 cells), as in-home and working activities are the main activities in this city. Social
functions compose an important part of urban functions. A few cells feature TF (183), EF
(152) or REF (112), and fewer than 100 cells feature CF (94) or ENF (78); the fewest cells
feature MF (32). Although there are fewer schooling activities than shopping and
entertainment activities, there are more EDF cells than CF and ENF cells because school-
ing activities are distributed in universities and schools, which occupy large spaces.
However, most commercial activities occur in stores along the roads in Shenzhen, while
entertainment activities occur at restaurants and clubs, which are usually small and
therefore can be found within residential or IFs.

Figure 10 displays the distribution of urban functions and illustrates that cells with RF are
spatially adjacent, forming a few neighborhoods, such as the residential areas in Nanshan,
Baoan and Longgang. IF cells are also grouped at the center of Nanshan, the center of
Futian, the west part of Baoan and the port of Hong Kong. The remaining six types of urban
functions are sparsely scattered throughout the city, surrounding RF and IF areas.

5.2.2. Comparison with land zoning map
Inferred urban functions were compared with the official Shenzhen land zoning map
(2010–2020) from the Shenzhen Urban Planning, Lands and Resource Commission to
evaluate the obtained results. In total, 58% of urban cells have the same urban function
and designed land use, similar to the results of Pei et al. (2014) in Singapore. Table 8
presents the confusion matrix between land use and daily urban functions. It illustrates
that RF, IF, CF and EDF present a consistent accuracy level of no less than 50%, while TF,
REF, ENF and MF present a consistent accuracy level below 50%, which implies differ-
ences between the land zoning map and real urban functions in Shenzhen, China. There
are two possible reasons for these differences. One is that some urban cells have
changed their functions, following the human usage of urban cells. In fact, Shenzhen
is the fastest developing city in China. The usage of land parcels changes greatly. For
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example, many old factories in south Shenzhen have been changed to residential
buildings or commercial parks as a result of urban renewal. The other reason for
differences is because function is measured for each urban cell, as land parcels are
substantially fragmented and used for different purposes. Aggregating human activities
to make urban function inferences may generate errors.

5.2.3. Dynamics of urban functions
Using the proportions of human activities per hour, high temporal resolution urban
functions were inferred. Figure 11 displays the change in urban functions provided by

Table 6. The mean proportion of human activities of different urban functions.
Urban functions In-home Working Shopping Transportation Schooling Recreation Entertainment

Global mean 0.436 0.341 0.043 0.046 0.031 0.030 0.074
RF 0.501 0.310 0.038 0.031 0.021 0.022 0.077
IF 0.279 0.501 0.046 0.053 0.031 0.026 0.064
CF 0.357 0.324 0.251 0.012 0.011 0.003 0.041
TF 0.452 0.283 0.011 0.211 0.009 0.004 0.031
EDF 0.464 0.296 0.014 0.006 0.176 0.018 0.026
REF 0.379 0.297 0.006 0.024 0.012 0.244 0.038
ENF 0.271 0.338 0.026 0.011 0.016 0.021 0.318
MF 0.211 0.374 0.110 0.080 0.044 0.085 0.095

RF: Residential functions; IF: industrial functions; CF: commercial functions; TF: transportation functions; EDF: education
functions; ENF: entertainment functions; MF: mixed functions. The bold texts indicate the proportion more than the
global mean.

Table 7. Characteristics of urban functions.
Functions RF IF CF TF EDF REF ENF MF

Number of cells 1438 409 94 183 152 112 78 32
Ratio 57.6% 16.4% 3.8% 7.3% 6.1% 4.5% 3.1% 1.3%

RF: Residential functions; IF: industrial functions; CF: commercial functions; TF: transportation functions; EDF: education
functions; ENF: entertainment functions; MF: mixed functions; REF: Recreational functions.

Figure 10. Distribution of urban functions in Shenzhen.
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the city and shows that urban functions are quite different at different times of day.
Following the rhythms of human activities, the RF begins at a high percentage (approxi-
mately 75%), falls in the morning, increases at noon, falls again in the afternoon and
finally recovers at night. The IF shows an almost reverse trend. It begins with a low
percentage (less than 10%), increases in the morning and declines at night. The remain-
ing six types of functions also vary with human activity rhythms. The percentage of EDF
is low at night but high during the day, reaching peaks at 10:00 and 17:00. The MF is
almost nonexistent at night but occupies approximately 2–5% of total cells during the
day. However, REF is more frequent at night and in the afternoon but less so in the
morning, which may be a result of the lower value of other social activities, as Figure 10
shows.

Table 8. The comparison of urban functions with land use.

Functions

Official land-use map

RF (%) IF (%) CF (%) TF (%) EDF (%) REF (%) ENF (%) MF (%)

This study RF 58 15 10 4 5 3 3 1
IF 17 61 5 5 5 3 4 1
CF 14 19 50 2 7 2 4 1
TF 4 21 12 46 7 2 7 1
EDF 18 12 7 1 51 3 7 1
REF 5 16 15 4 6 46 6 0
ENF 9 24 13 4 6 3 41 0
MF 25 9 13 6 0 6 3 38

RF: Residential functions; IF: industrial functions; CF: commercial functions; TF: transportation functions; EDF: education
functions; ENF: entertainment functions; MF: mixed functions; REF: Recreational functions. The bold value indicates
the ratio of the same function.

Figure 11. The rhythm of urban functions in Shenzhen, China.
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Taking four places as examples, we examined the reliability of the inferred human
activities and the associated urban function dynamic. Figure 12(a) displays the result of
Yingrenshi village, a residential community. It illustrates that this cell has 8000 in-home
activities during the night while about 2000 in the day; therefore, its function is
dominated by the RF in the whole day. Figure 12(b) reports the observed activities in
and the hourly function of Shenzhen North high-speed railway station. This figure
indicates that human activities increase from night to day in this place, but transporta-
tion activity rises very sharply, arriving the peak 2452 at 10 h, which is in accordance
with the schedule of high-speed railway. This activity diurnal dynamic leads to a
transformation from the RF to transportation. Figure 12(c) illustrates the activities and
function dynamic at a cell near Shenzhen University. The schooling and the working
activities rise significantly in this cell, which supports the highest school 2854 activities
(per cell) during the day; these functions are labeled educational in this time period.
Workplaces in the central business district are indicated in Figure 12(d), which displays
the change in in-home, working, recreation and entertainment activities. It indicates that
the working activities are no more than 200 in the night and arrive the peak 7952 at 14 h
and reduce to the fewest 100 in the night. The associated function transforms from

Figure 12. The functions of four places: (a) a residential community, (b) Shenzhen North high-speed
railway station, (c) Shenzhen University and (d) residential–working mixed area.
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residential to industrial and back to residential. In summary, both activity and function
results in these places suggest the effectiveness of the proposed data fusion approach.

Figure 13 displays the entropy of urban functions, which illustrates that the entropy is
quite low and that diversity is quite low at night, as the main provided function is for
residential purposes. In the daytime, the entropy increases as the diversity of urban
functions rises. The maximum entropy occurs in the 19:00 h, which indicates that the city
provides the greatest variety of functions. Then, entropy begins to decline as people go
back to their homes and the city returns to being a residential space.

To further investigate the diurnal dynamics of urban functions, the function transi-
tions at the same cell in typical time periods are analyzed. Figure 14 shows the observed
transitions between hourly urban functions and suggests that many cells change from
RF to IF and MF in the period [7:00–10:00] as people leave their homes for work.
Therefore, RFs provided by urban land are weakened, but both IFs and MFs are
strengthened.

In the afternoon period [15:00–18:00] when people are off duty and return home,
many cells with IFs change to provide RFs (Figure 15). However, half of the cells still
represent IFs, as work continues until 20:00. The number of ENF cells increases because
many entertainment venues, such as bars and clubs, open at that time. MF urban cells
also increase as people conduct quite different activities after work.

With respect to the night period (22:00–1:00), many people have returned home.
Accordingly, the number of cells with non-RFs (including IFs, TFs, recreation functions
and ENFs) declines, but the number of cells with RFs significantly increases (Figure 16).
Notably, there are still a few cells with IFs, as some factories operate on three shifts for 24 h.

6. Discussion and conclusion

The city is a complex system of human activities and their interactions with space and its
associated dynamics. Understanding urban functions and their dynamics is essential for
the planning, managing and governing of a city. Understanding how urban functions

Figure 13. The entropy of urban functions in Shenzhen, China.
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vary across space and time is very challenging. In the era of big data, massive human-
tracking data are available (e.g. mobile phone data, GPS data, social media data etc.) and
open a new horizon for urban function inference. However, a single type of human-
tracking data has its own drawbacks. For example, mobile phone data lack semantic
information, while social media data are sparse in space and time. Multisourced human-
tracking data should be fused to discover urban function dynamics.

Figure 14. The change in urban functions from 7:00 to 10:00.

Figure 15. The change in urban functions from 15:00 to 18:00.
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Following a ‘data-activity-function’ philosophy, this article develops a data fusion
approach to uncover urban functions and their diurnal dynamics by coupling mobile
phone positioning data and social media data. Citywide detailed spatial–temporal
human activities are first recovered from multisourced spatial–temporal data. In-home
and working activities are identified from massive mobile phone positioning data. The
remaining five social activities are annotated with their type information (such as travel,
schooling, shopping, recreation and entertainment) by the HMM inference with the
knowledge learned from social media check-in data. Then, the percentage of human
activities in each urban cell is calculated. By clustering spatial cells with similar composi-
tions of human activities, urban functions are recognized. Their hourly dynamics are
analyzed with the obtained spatial–temporal high-resolution human activity data.

The experiment was conducted in Shenzhen, China. The obtained results demon-
strate that both human activities and urban functions change in spatial and temporal
dimensions. Urban cells with residential or IFs are clustered in the city. However, urban
cells with essential social functions, such as commercial, educational and ENFs, are
sparsely scattered throughout the city. Compared to the land-zoning map, 58% of
urban cells have the same inferred urban functions, which implies that there are
differences between land-use planning and real urban functions in Shenzhen, China.

The results also reveal that urban functions change hour by hour. Following the cycle
of human activities, the functions provided by urban cells undergo significant changes
among residential, industrial and social functions, and this study presents the first
description of this typical diurnal dynamic, providing an image of the transitions of
human activities and the associated urban functions, which suggests that although
many urban cells have officially been labeled with one type of land use, they may
provide different functions at different times of day as they host different human
activities.

Figure 16. The change in urban functions from 22:00 to 1:00.
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The proposed study develops an alternative approach to investigating urban
functions and massive human-tracking data via human activities. The obtained
results bridge the gap between big data, human activity analysis and urban
dynamics. They also offer a deeper understanding of urban land, which will benefit
short-term urban decision-making, e.g. traffic management and emergency response,
among others.

This study has several limitations. First, due to constraints in data availability,
mobile phone positioning data in this study were used for only one working day.
As many studies have investigated the consistency of human activities based on
mobile phone data (Sevtsuk and Ratti 2010, Song et al. 2010), we believe that a 1-
day mobile phone dataset is feasible to uncover urban function dynamics. The results
can be further improved by analyzing mobile phone positioning data over a longer
period. Second, due to the sparsity of social media data, a few differences between
human activities from mobile phone data and social media data were observed (as
Figure 5). Additionally, social media check-in data and mobile phone positioning data
were collected in 2014 and 1 day in 2012, respectively. Therefore, biases are inevi-
tably imported into the learned social activity characteristics. In the further, multi-
sourced big geographical data, such as POIs, geo-tagged photos and travel survey
data, should be integrated to enrich the knowledge obtained from social media
check-in data. The reliability of human activities and, subsequently, urban functions
may be improved. Third, as a pioneering work regarding citywide human activities,
the reliability of the results was not directly examined. Alternative approaches to
harvesting high-resolution spatial and temporal data on citywide human activities are
expected.
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