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ARTICLE
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ABSTRACT
Understanding the stability of urban flows is critical for urban
transportation, urban planning and public health. However, few
studies have measured the stability of aggregate human conver-
gence or divergence patterns. We propose a spatiotemporal model
for assessing the stability of human convergence and divergence
patterns. A mobile phone location data set obtained from
Shenzhen, China, was used to assess the stability of daily human
convergence and divergence patterns at three different spatial
scales, i.e. points (cell phone towers), lines (bus lines) and areas
(traffic analysis zones [TAZs]). Our analysis results demonstrated that
the proposed model can identify points and bus lines with time-
dependent variations in stability, which is useful for delineating
TAZs for transportation planning, or adjusting bus timetables and
routes to meet the needs of bus riders. Comparisons of the results
obtained from the proposed model and the widely used entropy
measure indicated that the proposed model is suitable for assessing
the differences in stability for various types of spatial analysis units,
e.g. cell phone towers. Therefore, the proposed model is a useful
alternative approach of measuring spatiotemporal stability of
aggregate human convergence and divergence patterns, which
can be derived from the space–time trajectories of moving objects.
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1. Introduction

Understanding human mobility patterns can provide insights into the driving forces that
affect human movements as well as the interactions between humans and the func-
tional configuration of urban environment, thereby providing benefits in various fields
such as urban transportation (Wang et al. 2012), urban planning (Ratti et al. 2006), urban
policy development and public health (Mao et al. 2016). Previous studies have mainly
analyzed human mobility patterns to understand these driving forces and interactions
from either the individual or aggregate perspective. Many studies have analyzed the
spatiotemporal mobility behavior of individuals (Ratti et al. 2006, Yuan and Raubal 2012,
Liu et al. 2015) and their activities (e.g. work, shopping or entertainment)
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(Phithakkitnukoon et al. 2010) in order to predict reproducible patterns (Gonzalez et al.
2008, Simini et al. 2012), including residential mobility and daily-to-weekly mobility
(Sevtsuk and Ratti 2010). Aggregate human mobility patterns have been investigated
using various approaches, such as identifying ‘sink’ and ‘source’ areas (Liu et al. 2012) or
hot spot areas (Hoteit et al. 2014, Hu et al. 2014, Lichman and Smyth 2014, Scholz and
Lu 2014), investigating human convergence and divergence patterns (Yang et al. 2016),
and identifying activity groups (Shen and Cheng 2016) or mobility clusters (Hammond
and Thompson 2002). Studies of individual and aggregate human mobility can elucidate
the nature of mobility at various spatial and temporal scales, but the stability of human
mobility has not received sufficient attention in previous investigations.

Human convergence and divergence patterns are important and common manifesta-
tions of aggregate human mobility patterns in urban space, and their stability is critical
for understanding the forces that drive human movement as well as the efficiency of the
interactions between humans and the functional configuration in order to facilitate
urban policy development. Several studies have focused on the stability of individuals
in cities (Hanson 2005) and the temporal stability (Hammond and Thompson 2002) of
walking trips (Mitra et al. 2010), as well as the space–time structure of human mobility
(Sun et al. 2011). However, it is still necessary to measure the stability of aggregate
human mobility (i.e. convergence or divergence). In this study, we propose an approach
for measuring the stability of aggregate human convergence and divergence to address
this deficiency.

The research question addressed in this study is how to model the stability of human
convergence and divergence using mobile phone big data. The appearance of conver-
gence or divergence in an urban space unit comprises a sequence, which is not immu-
table and changes over time. The stability of this sequence may indicate changes in the
travel demand for a place. Quantitative analyses based on the stability of this sequence
can provide insights into the fluctuations in travel demand in an urban space, thereby
yielding valuable information for traffic managers and urban planners when designing
policies, such as planning bus lines and operating times. Several approaches have been
used to investigate human mobility, such as questionnaires, travel dairies and geo-
referenced human movement data sets obtained from different types of location-aware
devices (e.g. mobile phones, smart cards and GPS-enabled taxis) (Lu and Liu 2012, Shaw
et al. 2016). However, it is difficult to use questionnaires or travel diaries to investigate
human convergence and divergence because they contain coarse space–time information
and their sample sizes are limited (Ratti et al. 2006, Yuan and Raubal 2012). By contrast,
geo-referenced human movement big data provide new opportunities for understanding
human convergence and divergence patterns on unprecedented spatial and temporal
scales (Xu et al. 2015). Thus, we used mobile phone location data to investigate the
stability of human convergence and divergence patterns because of the advantages of
these data for capturing human mobility in the urban environment.

Our study makes the following three main contributions. First, we propose a model
for characterizing the stability of human divergence or divergence processes and
sequences. Second, we demonstrate the feasibility of our model for assessing the
stability of human convergence and divergence in three types of space units,
i.e. locations, traffic analysis zones (TAZs) and bus transit lines, thereby providing a
reference for optimizing and rescheduling bus line timetables and routes in order to
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improve the efficiency of public transport systems. Third, we compare the different
capabilities of our model and the widely used entropy method for measuring the
stability of human convergence and divergence.

The remainder of this paper is organized as follows. Section 2 reviews previous
studies of aggregate human mobility based on big data and stability measurements.
In Section 3, we propose an assessment model for characterizing the stability of human
convergence or divergence processes and sequences. In Section 4, we present the study
data set and analyses of the results obtained for three types of space units. The different
capabilities of our model and the entropy method are compared and analyzed in
Section 5. We give our conclusions in Section 6.

2. Related work

In this section, we review related research into aggregate human mobility using big data
and stability measurements.

Three groups of approaches have been used to investigate aggregate human mobi-
lity. The first group aims to detect human mobility or activity hotspots to determine the
mobility demand or activities in different places. Thus, Hoteit et al. (2014) detected
human mobility hotspots based on human trajectories; Scholz and Lu (2014) defined a
six-stage life cycle to model the dynamics of activity hot spots; and Hu et al. (2014) and
Lichman and Smyth (2014) used kernel density estimation to generate a human mobility
smooth surface based on the point locations obtained from moving objects. Liu et al.
(2012) borrowed the ‘source area and sink area’ concept from ecology to characterize
daily travel patterns, where they classified study areas into six traffic source-sink areas
based on the temporal vectors of taxi pick-ups and drop-offs. Zhu and Guo (2014)
proposed a hierarchical clustering method for mapping large spatial flow data (taxi
trips), which can generalize origin–destination flows to represent the main human inflow
and outflow areas.

The second group of approaches aims to identify concentrated human activity areas
such as human activity groups, regions of interest, semantically similar areas and spatially
interacting communities. For example, Schneider et al. (2013) found 17 unique networks
of mobility motifs that captured up to 90% of the population based on surveys and
mobile data sets for different countries. Pappalardo et al. (2015) identified the existence of
two distinct classes of individuals, i.e. returners and explorers, and showed that their
mobility patterns and social interactions were correlated. Hu et al. (2015) extracted urban
areas of interest using geotagged photos. Shen and Cheng (2016) modeled activities as
visits to spatiotemporal regions of interest and proposed a framework for identifying
activity groups based on space–time profiles. Steiger et al. (2016) proposed a geographic,
hierarchical self-organizing map to explore spatiotemporal and semantic clusters in
Twitter data. In addition, Sobolevsky et al. (2013) delineated geographical regions using
networks of human interactions, while Gao et al. (2013) discovered spatially interacting
communities based on mobile phone data. All of these methods are helpful for under-
standing active areas of interest for urban planning.

The third group of approaches aims to investigate the spatiotemporal dynamics or
rhythms of human dynamics. For example, some studies have utilized the call volume
(Erlang value) or number of calls as indicators to monitor the spatiotemporal dynamics
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of cities in real time (Liu et al. 2009, Calabrese et al. 2011), as well as for estimating the
population distribution (Kang et al. 2012, Deville et al. 2014) and identifying the rhythms
and variations in human dynamics for different cities or times (hourly, daily, weekly and
monthly) (Sevtsuk and Ratti 2010, Ahas et al. 2015) using long-term data. In addition,
visual analytics approaches have been proposed to analyze the spatiotemporal
dynamics of human mobility (Sagl et al. 2012, Gao 2015). Recently, Yang et al. (2016)
investigated human convergence and divergence patterns using mobile phone data.
These three groups of approaches are very useful for understanding aggregate human
mobility, but they are not capable of measuring the stability of aggregate human
mobility (i.e. convergence or divergence).

In terms of stability measurement, the Shorrocks trace index is used to summarize
mobility across cluster classes (Shorrocks 1978) and time (Hammond and Thompson
2002). Mitra et al. (2010) used this index to summarize the stability of the spatial patterns
during school walking trips over time. Previously, it was stated that: ‘The Shorrocks
index, however, does not yield complete information about mobility within the distribu-
tion’ and ‘does not differentiate between large and small movements within the dis-
tribution’ (Hammond and Thompson 2002, pp. 378). Entropy (Clausius 1850) was first
introduced to measure reversible changes in thermal energy, which was extended to
quantify the spatiotemporal stability of a link by Zayani et al. (2012). A high entropy
value indicates a high level of disorder, whereas a low value indicates greater organiza-
tion. However, entropy measurements only provide an overview of order quantification.
In addition, the temporal stability of the structure of human mobility in urban space
(Sun et al. 2011) has been investigated using principal component analysis. Very few
studies have focused on the stability of human convergence and divergence. Therefore,
for the first time, we propose an assessment model for measuring the stability of human
convergence and divergence using mobile phone data.

3. Proposed assessment model

In this section, we introduce three definitions of aggregate human mobility: human
convergence process (HCP), human divergence process (HDP) and daily human conver-
gence and divergence sequence (HCDS). Next, we explain the model for assessing the
stability of each human divergence or divergence process. Finally, we describe the
overall assessment model for daily HCDSs based on the stability of divergence and
divergence processes.

3.1. Definitions of human convergence and divergence

First, we introduce the concepts and definitions of human convergence and divergence.
In the case of mobile phone data, all the locations of humans are recorded by cell phone
towers. The outgoing flow (outflow) of a cell phone tower is defined as the cumulative
movement number departing from the cell phone tower, whereas the incoming flow
(inflow) of this tower is defined as the cumulative movements arriving at the cell phone
tower. Figure 1 illustrates the outflow and inflow for cell phone tower A during time slot
Ti. The netflow of the cell phone tower during this time slot Ti is defined as:
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netflowTi ¼ inflowTi � outflowTi : (1)

A positive netflow indicates that the number of people served by the cell phone tower is
increasing during the time slot, where we treat this status as convergence. By contrast, a
negative netflow indicates that the number of people served by the cell phone tower is
decreasing during the time slot, where we treat this status as divergence. The cumulative
netflow of the cell phone tower in time slot Tj can be calculated as:

Nj ¼
Xj

j¼1

netflowTi ; (2)

where Nj represents the cumulative netflow value for the cell phone tower in the time
period from T1 to Tj. Figure 2 shows the variation in the cumulative netflow for a cell
phone tower over time slots during a day. It is obvious that this variation presents the
human dynamics of the cell phone tower. For each tower, there is a time series of
cumulative netflow variation (Figure 2), which represents its human dynamics. Based on

Figure 1. Outflow and inflow of cell phone tower A during time slot Ti.

Figure 2. Variations in the cumulative netflow for the cell phone tower over time. The dashed red
line indicates the trend in human convergence or divergence, and the solid black line indicates the
variation in the cumulative netflow.
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this representation, we introduce several definitions of human convergence and diver-
gence, as follows.

Definition 1 Time-dependent cumulative netflow sequence: Let
N ¼ hN1;N2; � � �Nj; � � �NTi be the time sequence of a cumulative netflow belonging
to a cell phone tower, where Nj represents the cumulative netflow within time unit Tj.
A subsequence N′ includes part of N, which is represented as N0 ¼
hNi;Niþ1;Niþ2; � � � ;Nji; 1 � i � j � T; where T represents the total time slots in a day.

Definition 2 HCP: If a subsequence of N, i.e. N0 ¼ hNi;Niþ1;Niþ2; � � � ;Nji, meets the
following conditions in Equation (3), which means that the cumulative netflow is increas-
ing monotonically from Ti to Tj, then it can be defined as a HCP. There are two
exceptional cases: case 1 is i = 1, which can ignore the first condition in Equation (3);
and case 2 is j = T, where T is the maximum time slot in the assessment, which can
ignore the third condition in Equation (3). For example, the subsequences between time
slots T6 and T10, and T12 and T15 in Figure 2 are HCPs.

Ni � Ni�1

Ni � Niþ1 � Niþ2 � � � � � Nj

Nj � Njþ1

:

8<
: (3)

Definition 3 HDP: If a subsequence of N, i.e. N0 ¼ hNi;Niþ1;Niþ2; � � � ;Nji, meets the
following conditions in Equation (4), which means that the cumulative netflow is decreasing
monotonically from Ti to Tj, then the subsequence of N can be defined as a HDP, except for
the two cases related to HCP in the definition above. For example, the subsequences
between time slots T1 and T6, T10 and T12, and T15 and T23 in Figure 2 are HDPs.

Ni � Ni�1

Ni � Niþ1 � Niþ2 � � � � � Nj:
Nj � Njþ1

8<
: (4)

Definition 4 HCDS: The variation in the cumulative netflow of a phone tower can be
defined as a sequence of alternations between HCP and HDP. The HCDS is used to
represent the human dynamics of this cell phone tower. For example, as shown in
Figure 2, the changes in the cumulative netflow with yellow shading indicate the HCP,
whereas those with blue shading indicate the HDP. The HCDS of this cell phone tower
can be modeled as: HDP → HCP → HDP → HCP → HDP. We propose an assessment
model for quantifying the stability of HCP, HDP and HCDS.

3.2. Stability of HCP or HDP

Before defining the stability of human convergence and divergence, we first consider their
characteristic variations. Figure 3 shows four examples of HCPs. Ts and Te represent the start
and end time slot of each convergence process, and Ns and Ne represent the corresponding
cumulative netflow at start time slot Ts and end time slot Te, respectively. We assume that
these processes have the same Ns and we consider some different situations for this HCP, as
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follows. (1) All four processes have the same value ofNs but the duration of the convergence
process in Figure 3(c) is longer than that of the other three processes. (2) The cumulative
netflow Ne at the end time slot is the same in Figure 3(b)–(d), but in Figure 3(a), Ne is smaller
than that in the other three processes. (3) Both the duration and cumulative netflow are the
same in Figure 3(b,d), but the fluctuation of the HCP in Figure 3(b) is weaker than that in
Figure 3(d). Therefore, these specific characteristics should be considered when quantifying
the stability of the human dynamics of a place.

Due to the differences discussed above, we measure the stability by combining three
factors, i.e. the duration (Te−Ts), magnitude (Ne −Ns) and fluctuation (which indicates the
extent of variation during a human convergence or divergence process). If two HCPs
have the same magnitude (Ne − Ns), the HCP with a longer duration is considered to be
more stable than the other HCP with a shorter time duration. If two HCPs have the same
duration, the HCP with the smaller magnitude is considered to be more stable than the
HCP with a larger magnitude. If two HCPs have the same duration and magnitude, the
HCP with a smaller fluctuation is considered to be more stable than the other HCP with a
greater fluctuation. Thus, the duration, magnitude and fluctuation are used to quantify
differences when assessing the stability of HCPs.

The trend in the variation of the cumulative netflow (Ne − Ns) in a HCP is represented
as a red dashed trend line in Figure 3, which indicates the intensity of human gathering
during the time period between Te and Ts. The slope of the trend line can be used to
quantify the intensity of the HCP:

v ¼ Ne � Ns

Te � Ts
; (5)

Figure 3. Examples of human convergence processes (HCPs). The red dashed line indicates the trend
of human convergence and the black solid line indicates the variation in the cumulative netflow.
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f ¼ e�k� vj j; (6)

where v is the slope of the trend line, k is a scale parameter and the exponential function
is employed to normalize v, and thus the range of f is between zero and one. When f is
near to 1, the HCP is constant during the time period, so the convergence process is very
stable. When f is near to 0, the HCP undergoes extreme growth during the time period,
so the HCP is highly unstable. In this manner, f can measure the stability of the HCP by
integrating variations in the cumulative netflow and the duration.

To quantify the differences in the fluctuations of the HCPs in Figure 3(b,d), which
have the same Ns, Ne and time period, we calculate the values (plotted as blue nodes on
the trend line) and summarize the difference between the trend values and real
cumulative netflow values to denote the scope of the change in HCP. The trend line is
formulated as follows:

y ¼ Ne � Ns

Te � Ts
� x � Tsð Þ þ Ns; (7)

Based on Equation (7), we calculate a trend value for each time slot Ti. Therefore, each
time slot has a different value (Equation 8) between the real cumulative netflow value Ni

and the calculated trend value Yi. The standard deviation of these different values in a
HCP is employed to quantify the fluctuation in the convergence process. If the HCP has
smaller standard deviations (Equation 9) for these differences, then the fluctuation
process is more stable. Similarly, an exponential function is employed to normalize the
standard deviation using Equation (10):

Δ�Ni ¼ Ni � yi; (8)

σΔN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ΔNi � Δ�Nð Þ2;
s

(9)

g ¼ e�
σΔN
ΔT ;ΔT ¼ Te � Ts þ 1; (10)

where Δ�N represents the average value of ΔNi and ΔT represents the duration of the
convergence process. g ranges between zero and one, and the fluctuation in the HCP
process is more stable when the value of g is larger.

After quantifying the stability of the trend line f and the fluctuation g for the HCP, we
use Equation (11) to define the overall stability level of the HCP in a mutually indepen-
dent manner:

s ¼ f � g ¼ e�k� vj j � e�σΔN
ΔT ; (11)

where s represents the stability of the HCP process, which ranges between zero and one,
and the HCP process is the more stable when the value of s is closer to one.

The stability of a HDP can be calculated in a similar manner to a HCP. The only
difference in the process used for calculating a HCP and HDP is the slope of the trend
lines. The slope of the trend line is positive in a HCP, whereas the slope is negative in a
HDP. However, this is not important for assessing stability in the proposed model
because we use the absolute value of the slope of the trend line.
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3.3. Stability of daily convergence and divergence sequences

Based on the definitions of HCP and HDP, we propose a model for assessing the stability
of the daily HCDS for each cell phone tower. Figure 4 shows two examples of daily
HCDSs. In the daily HCDS, the HCP is the rectangle filled with yellow lines and the HDP is
that filled with blue lines. The stability of each HCP or HDP can be calculated using
Equation (11), where s denotes the stability. Therefore, si and ΔTi in Figure 4 represent
the stability value and duration time for the corresponding HCP or HDP, respectively. A
HCP or HDP is more stable if the stability value (si) is larger or the duration (ΔTi) is longer,
or both. Therefore, we use the area covered by these rectangles for HCP or HDP to
indicate the relative changes in stability (A) for each HCDS, which is formulated as:

A ¼
Xm
i¼1

Ai ¼
Xm
i¼1

si � ΔTi; (12)

Xm
i¼1

ΔTi ¼ T ; 0 � A � T ; (13)

where m represents the total number of all processes, T is the total number of time
slots and si ranges between zero and one, so the range of A is between zero and T. In
addition to the summed area of these processes, the fluctuation between HCP and
HDP can also indicate the variation in the stability of the HCDS. For example, the two
sequences in Figure 4 have the same area but the fluctuation in Figure 4(b) is more
obvious than that in Figure 4(a), which indicates that the HCDS in Figure 4(b) is less
stable than that in Figure 4(a). In order to distinguish this difference, we employ the

Figure 4. Examples of human convergence and divergence sequences. Area filled with blue lines is
human divergent process, and area with orange lines is human convergent process. The red line is
the boundary of convergence and divergence process.
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length of the upper boundary (red line in Figure 4) to represent the fluctuation. A
HCDS with a longer upper boundary has a greater fluctuation between a neighboring
HCP and HDP; therefore, this HCDS is more unstable. The length can be calculated as
follows:

P ¼ s1 þ
Xm
i¼2

si � si�1j j þ sm þ
Xm
i¼1

ΔTi; P � T : (14)

In order to combine the effects of the summed area and the length of the upper
boundary on the stability of the HCDS, we assess the stability of the HCDS by using
the ratio between them, as follows:

Q ¼ A
P
¼

Pm
i¼1

si � ΔTi

s1 þ
Pm
i¼2

si � si�1j j þ sm þPm
i¼1

ΔTi

; 0 � Q � 1; (15)

where A is less than or equal to P, so the stability Q lies between zero and one. Equation
(15) shows that if a HCDS has a larger stability value and a shorter upper boundary, then
it will be more stable.

4. Experiment and results

4.1. Data set and preprocessing

The mobile phone location data set used in this study was collected by a major telecom
operator in Shenzhen, which is a city with the highest population density and the fourth
highest economic output in China. A recent census showed that Shenzhen City covers a
total area of approximately 2000 km2, and it has a population of more than 15 million
residents (Shenzhen Statistical YearBook 2012).

The mobile phone data set used in this study was acquired through a research
collaboration. The data set comprised one workday of records for approximately 16 million
cell phones. In contrast to call detail records that passively capture individual footprints
only during actual communication such as phone calls and text messages (Yin et al. 2015,
Zhao et al. 2016), the data set used in this study represents individual locations (at the cell
phone tower level) approximately once every hour. Each record comprised an anonymous
user ID, recording time, and the longitude and latitude of the cell phone tower used.
Table 1 shows an example of a cell phone user’s records from one day. The time of each
record was at a fine scale of seconds. In total, 5940 cell phone towers were extracted from
the data set and each tower was labeled with a unique Tower-ID number (see Figure 5 in

Table 1. Example of an individual’s cell phone records during one day.
User ID Record time Time window Longitude Latitude

bfa8m7****** 00:25:36 00:00–01:00 113.*** 22.***
bfa8m7****** 01:26:40 01:00–02:00 113.*** 22.***
bfa8m7****** 02:20:53 02:00–03:00 113.*** 22.***

: : : : :
bfa8m7****** 23:33:50 23:00–24:00 113.*** 22.***
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which, for privacy protection, individual records have been smoothed using a spatial kernel
density surface generated based on the locations of the cell phone towers).

For each cell phone, the space–time trajectory can be constructed as follows:

Tr ¼ p1 x1; y1; t1; Id1ð Þ; p2 x2; y2; t2; Id2ð Þ; � � � ; pn xn; yn; tn; Idnð Þ½ �; (16)

where xi, yi and Idi are the longitude, latitude and Tower-ID of recording point pi, and ti
represents the time when the location of the cell phone was updated. Each record was
allocated to a time window of approximately 1 hour (Table 1). For every pair of adjacent
time windows, if the locations of the two recording points were not identical (xi�xiþ1 or
yi�yiþ1), then this indicated that a movement occurred between the two time windows.
We recorded the original and terminal Tower-ID of the movement and identified the two
adjacent time windows as a time slot. For example, p1 was recorded by cell phone tower
Idi during time window 00:00–01:00 and p2 was recorded by cell phone tower Idj during
the next time window 01:00–02:00. If Idi�Idj , then a movement could be extracted from
Idi to Idj, and the two adjacent time windows 00:00–02:00 could be denoted as the time
slot T1 . In this manner, we extracted all the movements for time slots T1 (00:00–02:00),
T2 (01:00–03:00), T3 (02:00–04:00), . . ., T23 (22:00–24:00). Thus, there were 23 time slots in
one day. For each time slot, we used all the extracted movements to create inflow,
outflow and netflow data for the cell phone tower at each time slot, which we used to
measure the stability of human convergence and divergence.

4.2. Stability of HCP or HDP

We extracted 22,234 HCPs and 21,132 HDPs from the data set and calculated the stability
of these HCPs and HDPs for each cell phone tower according to Equation (11). The
selection of the scale parameter k in Equation (6) depends on the netflow values. In this
data set, more than 95% of the netflow values varied between –1000 and 1000. If k = 1, the
value of f is extremely small, so we used k = 0.01 to ensure that k*|v| was between –10 and
10 because the value of f could be normalized in a range of [0, 1]. Figure 6 shows the
distribution of the stability for the HCPs and HDPs. More than 42% of the HCPs and 37.6%

Figure 5. Spatial kernel density of the distribution of cell phone towers.
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of the HDPs were greater than 0.75 for these cell phone towers. In order to determine the
similarity between the percentages in Figure 6(a,b), we used Pearson’s correlation coeffi-
cient R (Pearson 1920), which is defined as:

R ¼
Pn
i¼1

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � �xð Þ2 �Pn
i¼1

yi � �yð Þ2
s ; (17)

where xi and yi are the different stability percentages, and �x and �y are the average
percentages. The R value calculated between the percentages in Figure 6(a,b) is 0.944,
and thus the percentage distribution for HCP and HDP was relatively close. This indicates
the symmetry of urban human flow, i.e. the inflow for a cell phone tower always comes
from the outflow of another cell phone tower. Hence, the results obtained in this study
are consistent with expectations.

To investigate the differences in stability for the HCPs and HDPs in different time
periods during the day, we selected three time periods: morning (06:00–12:00), after-
noon (12:00–17:00) and evening (17:00–23:00). Figure 7 shows the stability distribu-
tions for the HCPs and HDPs in the morning, afternoon and evening, where their
Pearson’s R values are 0.989, 0.620 and 0.925, respectively, which means that the HCPs
and HDPs had similar percentage variation patterns, especially in the morning and
evening.

Some specific stability distribution patterns are shown in Figure 7. For example, the
percentages of both unstable HCPs and HDPs in the morning were the highest among
the three periods, followed by the evening. The stability percentage distribution was
more homogeneous in the afternoon than the other two time periods. The relatively
high HCP and HDP percentages in the morning and evening represent the high intensity
of human mobility associated with the commuting period, which was more unstable
than that in the afternoon.

4.3. Assessing the HCDS stability for people covered by TAZs

Based on the assessments of HCPs and HDPs for cell phone towers, we employed the
proposed approach to assess the HCDS stability for people covered by urban TAZs. TAZs

Figure 6. Distribution of stability for human convergence processes (HCPs) and human divergence
processes (HDPs) (bin width = 0.05).
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are the primary spatial units used in analyses, where trips begin and end in transporta-
tion planning, and they play important roles in travel demand forecasting models (e.g.
trip generation and trip distribution) (You et al. 1998, Dong et al. 2015). Assessing the
stability of TAZs is helpful for understanding the aggregate human mobility in these
zones, and it can support the division of TAZs during transportation planning.

To assess the stability of HCDS, we aggregated the inflow, outflow and netflow derived
from the space–time trajectories of mobile phones and calculated the stability in each
TAZ using the proposed method. Figure 8 shows the statistical distribution of stability
for individual TAZs, which demonstrates that over 85% of the TAZs had stability values
smaller than 0.5. Figure 9 shows the spatial distribution of stability, where there are
several obvious patterns. First, most of the TAZs with the highest stability were located
in the eastern part of the city, as shown by the red color in Figure 9. These areas
included green industrial zones and nature preservation zones. Second, the HCDS was
more unstable in the southern part of the city because this is the economic center of the
city, which includes most of the companies, residential areas, shopping malls,

Figure 7. Distributions of stability for human convergence processes (HCPs) and human divergence
processes (HDPs) in the morning, afternoon and evening periods (bin width = 0.05).

Figure 8. Statistical distribution of stability for traffic analysis zones.
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restaurants, financial institutions and recreational venues (bars, cinemas, etc.). These
locations usually attract numerous people to work, shop, eat, visit entertainment centers
and engage in other activities during the daytime. In addition, the HCDS was very
unstable at three major traffic hubs (airport, Shenzhen railway station and Shenzhen
north railway station) and some highway intersections. These locations are very impor-
tant for connecting with areas outside the city, which suggests that the human con-
vergence and divergence at these locations changed greatly during the daytime.
According to the spatial patterns shown in Figure 9, the stability value at individual
cell phone towers can be used to support the subdivision of TAZs. Previously, Dong et al.
(2015) extracted four characteristics of human mobility (i.e. real-time user volume,
inflow, outflow and incremental flow) from mobile phone data to obtain TAZ subdivi-
sions. Based on these data, transportation planners can introduce separate policies for
stable and unstable TAZs in order to make transportation systems more efficient.

4.4. Assessing the HCDS stability for people covered by a bus transit system

We also used the proposed assessment model to evaluate the HCDS stability of people
covered by a bus transit system, which could help to understand the potential demand
for a bus transit system and facilitate policy decisions, such as adjusting the bus time-
table or routes according to the number of people served.

We used mobile phone data to assess the stability of the people who were most likely
served by each bus stop. According to the design criteria for public transport stops
(National Standards of China, GB50220-95, 1995) and the distance people normally walk
to access a bus stop (Delbosc and Currie 2011), we selected 500 m as the area covered
by a bus stop. Due to the limitation of the mobile phone data set, it was impossible to
know the exact bus stops to which people walked and the people served by each bus
stop. Therefore, for each bus stop, we could only use the cell phone towers located
within 500 m to assess the stability of the bus stop. It was possible that some towers
were covered by two or more bus stops, which could lead to some estimation errors, but

Figure 9. Spatial distribution of stability for traffic analysis zones.

14 Z. FANG ET AL.



the results of this analysis are still useful for understanding human convergence and
divergence in a bus transit system at the aggregate level.

We used a distance of 500 m to search for mobile phone towers near a bus stop
(Figure 10), and we assumed that the people near each tower could be covered by the
bus stop. The netflow of each bus stop was calculated by aggregating the inflow, outflow
and netflow derived from the space–time trajectories of the mobile phones that entered
or left the area within 500 m of the bus stop. We then calculated the stability of each bus
stop in the same manner as the cell phone towers.

Figure 11 shows the stability of all the bus stops during one day. To understand the
HCDS stability, we grouped the stability values of all the bus stops into five levels with
an interval of 0.2. In Figure 11, groups A and E represent the lowest and highest levels of
stability, respectively. Most of the bus stops with the lowest stability were located in
large industrial zones (i.e. a, b, c and f), high-tech parks (i.e. d and g) and urban central
business districts (i.e. h and j).

A bus line comprised bus line segments according to the representation of a bus line
system in the GIS for transportation. The HCDS stability of a bus line segment between
two bus stops was set as the average HCDS stability value for these bus stops. Based on
the assigned HCDS stability values, we also grouped the stability values into five levels in
the same manner as the bus stops. Figure 12 illustrates the HCDS stability results
obtained for all the bus lines, which shows that 62.4% of the bus line segments had
stability level C, and thus most of the bus line segments had a relatively stable human
convergence and divergence status. Very few bus line segments had the highest level of

Figure 10. Area covered by bus stops.

Figure 11. Human convergence and divergence sequence (HCDS) stability for urban bus stops.
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stability, and they were located in the relatively rural part of this study area (i.e. the
green lines in Figure 12). The highly unstable areas of the bus line segments were
located in the center of the city (i.e. g, h and i) and close to Shenzhen airport (i.e. a).

According to the rhythm of daily life for urban citizens, we divided the whole day into
seven time periods (see Table 2), which included the main meaningful activity periods
within a day. These seven time periods were used to examine the detailed HCDS stability
for bus lines, which could help bus companies to understand the adjustments needed to
their routine timetable and routes in order to meet the requirements of bus users.

Tables 3 and 4 show the percentages of bus stops and the service distances of the bus line
segments in five levels for the seven time periods, which demonstrate that 75.2% of the bus
stops and 84.4% of the service distances of the bus line segments were located at level E in T1
because most people were sleeping at home during this time period. In addition, 19.3% and
45.5%of bus stopswere at levels A and B, respectively, during themorning commuting period
T2, which were higher than those in the evening commuting period T6 (5.8% at level A and
26.8% at level B). The HCDS stability of the bus line segments also exhibited similar patterns

Figure 12. Human convergence and divergence sequence (HCDS) stability for bus line segments.

Table 2. The seven time periods used in this study.
Time period Main activity Time period Main activity

T1 00:00–06:00 Sleep time T5 14:00–17:00 Afternoon work time
T2 06:00–09:00 Morning commute time T6 17:00–20:00 Evening commute time
T3 09:00–12:00 Morning work time T7 20:00–24:00 Free time
T4 12:00–14:00 Lunch time

Table 3. Percentage of bus stops at the five levels for the seven time periods.
A (%) B (%) C (%) D (%) E (%)

T1 0.1 0.3 2.0 22.4 75.2
T2 19.3 45.5 28.6 5.2 1.4
T3 5.1 23.1 41.4 26.4 4.0
T4 4.6 16.3 39.2 32.7 7.2
T5 3.6 19.3 47.1 25.8 4.2
T6 5.8 26.8 41.7 22.1 3.6
T7 3.1 17.3 39.2 32.4 8.0
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(see Figure 13). These results indicate that human mobility is more unstable in the morning
commuting period than the evening commuting period, which suggests that bus companies
need to pay more attention to the travel demands in these unstable areas (e.g. the lines at
level B) by monitoring flows and responding to unstable flows with different strategies in
terms of the bus line departure interval. Thus, they can improve the performance of bus line
services by saving energy and making full use of labor resources. By contrast, in time

Table 4. Percentage of service distances of the bus line segments at the five
levels for the seven time periods.

A (%) B (%) C (%) D (%) E (%)

T1 0.4 0.7 1.7 12.8 84.4
T2 5.0 42.9 44.3 6.9 0.9
T3 0.7 9.9 40.3 44.9 4.2
T4 0.8 5.2 35.6 49.5 8.9
T5 0.7 6.6 48.8 40.7 3.2
T6 1.6 19.5 48.1 28.4 2.4
T7 0.7 8.8 37.3 45.0 8.2

Figure 13. Human convergence and divergence sequence (HCDS) stability of bus line segments in
T2 and T6.
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periods T3, T4, T5 and T7, most of the bus stops and bus line segments were at levels C and D,
which indicates that human convergence and divergence were relatively stable during these
time periods. These patterns suggest that the bus line departure intervals in these time
periods do not need to be adjusted dynamically, but instead the departure intervals should
be decided by the actual travel flows in these areas.

5. Discussion

In order to assess the suitability of the proposed model in identifying spatiotemporal
stability of aggregate human convergence and divergence patterns, we compare the
results of the proposed model with the entropy measure. Entropy is a widely used index
for examining the stability of a system, and it has been employed recently to reflect the
heterogeneity of human movements (Song et al. 2010). In this study, we compared the
difference in performance between entropy and the proposed assessment model for
determining the stability of daily human dynamics in a place.

Based on the defined time series of the cumulative netflow for a cell phone tower
(see Figure 2), the entropy of human dynamics for a cell phone tower can be calculated as
follows:

sum N ¼
X23
i¼1

Nij j; (18)

pi ¼ Nij j
sum N

; (19)

E ¼ �
X23
i¼1

pi � log2pi; (20)

where E represents the entropy index. A larger entropy value for a cell phone tower
indicates that each netflow Ni is close to the average value of sum N, which indicates
that the time series of the cumulative netflow for a tower is more stable.

Figure 14 illustrates the distribution of the entropy value and the proposed stability
model, where this figure shows that they do not have a linear relationship, which
indicates that the entropy and proposed stability model differ in their ability to reflect
the HCDS stability.

In order to compare the differences between entropy and the proposed stability
model, we selected cell phone towers with comparable entropy values and stability
values, and then visualized the time series for the cumulative netflow to check the
human dynamics around these cell phone towers. It should be noted that no specific
rule was employed for selecting the entropy or stability values. Figure 15(a) shows the
time-dependent cumulative netflow for the entropy values at 3.9, 4.0 and 4.1. Figure 15
(b) shows the time-dependent cumulative netflow for the stability values at 0.5, 0.6 and
0.7. An obvious pattern is visible in Figure 15(a) where the cumulative netflow varies
significantly whereas the entropy value remains the same. However, the proposed
model can reflect the stability of the cumulative netflow better than the entropy value
because the time series of the cumulative netflow with a high stability value derived from
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the proposed model does not exhibit large variations (e.g. levels D and E in Figure 15(a)),
whereas those with a low value have larger variations (e.g. level A in Figure 15(a)). This
result indicates that entropy performed poorly at reflecting the variations in the time
series of the cumulative netflow between different towers. Figure 15(b) shows the
capacity of the proposed model for measuring variations in the time series of the
cumulative netflow, but these lines also exhibit some variations with different entropy
values. Therefore, Figure 15 demonstrates that entropy is a better option for comparing
variations in the aggregate human mobility for an individual cell phone tower during
different time periods, whereas the proposed stability model is better for comparing the
differences in aggregate human mobility between different cell phone towers. To some
extent, these two indicators are complementary to each other and they can be used
together to assess the stability of aggregate human mobility.

6. Conclusion

In this study, we proposed a model for assessing the stability of the daily HCDS, which we
used to assess the HCDS stability for a cell phone tower, TAZs and bus lines. The experi-
mental results obtained in this study demonstrate the capacity of the proposed model for
finding potentially unstable areas of human mobility. These areas can then be used to
facilitate decision-making, such as time-varying bandwidth assignment for a mobile com-
munication system based on the HCDS stability of cell phone tower, combining or
separating TAZs according to the HCDS stability of TAZs, responding to unstable flows
with different strategies for bus line departure intervals and helping to find a suitable
departure interval according to the HCDS stability of bus stops and bus lines. In addition,
we compared the capacity of entropy and the proposed model for representing HCDS, and

Figure 14. Stability and entropy of cell phone towers.
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we concluded that entropy can compare the variations for a tower in different time period
series, whereas the proposed stability model can compare the variations for different
towers. Both measures can be used in a complementary manner.

The proposed model is capable of assessing the stability of human convergence and
divergence with different spatial units (e.g. cell phone towers, bus lines and TAZs). Thus,
the model can be applied to other cities or data sets to inform decision-making during
transport planning. The results of this study are based on mobile phone data that
included most of the population of a city. Therefore, our results reflect certain aspects
of the aggregate characteristics of human convergence and divergence. In the future, it
would be useful to apply the same model to other types of data sets, such as transit
smart card data and floating car data, in order to capture a more comprehensive
overview of the human convergence and divergence patterns in a city. In addition,
there is a common problem when the signal switches between adjacent cell phone

Figure 15. Variations in the cumulative netflow for cell phone towers with the same: (a) entropy = 3.9,
4.0 and 4.1; or (b) stability = 0.5, 0.6 and 0.7.
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towers. We focused on aggregate population flows rather than individual mobility
patterns, but we consider that our results are not highly sensitive to this issue because
signal switches tend to balance out with each other at an aggregate level. However, this
is a data issue that researchers should consider when conducting mobility research
using mobile phone data.

In future research, we may need to integrate mobile phone location data with other
data sources, such as CCTV video monitoring data, smart transit card data from a city or
social media data to obtain more accurate flow assessments. In addition, our future
research may focus on investigating the relationships between the HCDS stability and
the spatial and social characteristics of urban systems, such as land-use functions and
points of interest.
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