
lable at ScienceDirect

Environmental Modelling & Software 89 (2017) 97e105
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
Short communication
Building a Virtual Ecosystem Dynamic Model for Root Research

Yang Xu a, c, Dali Wang b, *, Colleen M. Iversen b, Anthony Walker b, Jeff Warren b

a Department of Geography, University of Tennessee, Knoxville, TN, USA
b Environmental Science Division, Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
c Senseable City Laboratory, SMART Centre, Singapore 138602, Singapore
a r t i c l e i n f o

Article history:
Received 15 December 2015
Received in revised form
30 June 2016
Accepted 11 November 2016

Keywords:
Functional test framework
Community Land Model
Root function
Ecosystem processes
* Corresponding author.
E-mail addresses: yxu30@vols.utk.edu, yangxu@sm

ornl.gov (D. Wang), iversencm@ornl.gov (C.M. Iverse
warrenjm@ornl.gov (J. Warren).

http://dx.doi.org/10.1016/j.envsoft.2016.11.014
1364-8152/Published by Elsevier Ltd.
a b s t r a c t

Understanding the fundamental mechanistic processes within large environmental models has great
implications in model interpretation and future improvement. However, obtaining a good understanding
of these processes can be challenging due to the complexities in model structures and software con-
figurations. This paper introduces a functional test framework - with unique approaches to tackling
software complexities in large environmental models e to facilitate process-based model exploration
and validation. A Virtual Ecosystem Dynamic Model is developed as a case study to better understand
and validate root-related processes in the Community Land Model (CLM). The proposed framework could
help empiricists better access the inner workings of large environmental models, and facilitate inte-
grative collaborations among broad scientific communities including field scientists, environmental
system modelers, and computer scientists.

Published by Elsevier Ltd.
1. Introduction

Over the past several decades, many computer models have
been developed to examine numerous mechanistic processes of
environmental systems to better predict the future of our natural
and built environment. With the rapid development of computing
technologies, many high performance and integrated environ-
mental models have been proposed to tackle novel research chal-
lenges (Arnold, 2013; Bergez et al., 2013; Granell et al., 2013). These
large-scale and integrated models have advanced our under-
standing of environmental systems. However, software complex-
ities quickly become an issue that hinders model interpretation and
future improvement. Such complexities are partially reflected by
the intricate relations among various model components. Also, the
wide adoption of numerous scientific and parallel libraries in-
troduces additional challenges in software configurations, which
limit the applicability of these models for general use.

As a result, it becomes difficult for researchers with varying
scientific expertise and technical background to take full advantage
of these models, especially when their research focuses on partic-
ular ecosystem processes represented across multiple model
art.mit.edu (Y. Xu), wangd@
n), alp@ornl.gov (A. Walker),
components. Hence, we need new tools to eliminate or at least
mitigate these software complexities to facilitate process-based
model exploration and validation. This would inspire integrative
collaborations among broad scientific communities that would lead
to new model insights and improvements.

In this study, we present an approach to tackling software
complexities in large environmental models to provide convenient
ways for process-based model exploration. Our previous efforts
demonstrated proof of principle for the functional test platform for
the examination of internal ecosystem processes in large environ-
mental models (Wang et al., 2014, 2015). In those studies, we per-
formed initial tests of the platform on the highly refined and
validated model framework devoted to key leaf photosynthetic
processes. In contrast, this current work further develops the
functional test framework and applies it to the set of root-related
processes that are neither refined, nor well validated in most
large environmental models (Warren et al., 2015). Unlike previous
studies which examine models' software systems from a topolog-
ical perspective (Myers, 2003; Zhang et al., 2010), our proposed
framework values the hypotheses, scientific workflow, and nu-
merical methods inherited from existing model development. The
frameworkmakes it possible for empiricists, such as environmental
scientists to focus on the fundamental processes tied to their own
research interests without worrying about the complexities in
model structures and software configurations. To demonstrate the
capability of the framework, we use the Community Land Model

mailto:yxu30@vols.utk.edu
mailto:yangxu@smart.mit.edu
mailto:wangd@ornl.gov
mailto:wangd@ornl.gov
mailto:iversencm@ornl.gov
mailto:alp@ornl.gov
mailto:warrenjm@ornl.gov
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2016.11.014&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2016.11.014
http://dx.doi.org/10.1016/j.envsoft.2016.11.014
http://dx.doi.org/10.1016/j.envsoft.2016.11.014


Fig. 1. Software structure of CLM represented by a call tree.1 The main driver of CLM (i.e., clm_drv) consists of numerous subroutines related to land biogeophysics, biogeochemistry,
hydrological cycle, human dimension, and ecosystem dynamics (blue nodes denote the subroutines that contain other child subroutines). Within CLM, there is one subroutine called
CNEcosystemDyn, which is tied to the root-related processes in the model. As illustrated in the graph, the child nodes of CNEcosystemDyn represent the subroutines that simulate
vegetation dynamics including phenology, composition, structure, carbon-nitrogen allocation, vegetation respiration, etc. (Green nodes denote the subroutines which contain other
functions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Y. Xu et al. / Environmental Modelling & Software 89 (2017) 97e10598
(Oleson et al., 2010) as a case study, and introduce our experience of
generating a Virtual Ecosystem Dynamic Model to assist the
exploration of root-related processes. We believe our effort to
establish the functional test framework could introduce new op-
portunities for process-based multiscale model verification and
validation, and benefit other research programs which face similar
challenges in large-scale environmental modelling.
2. The Community Land Model and need for a Virtual
Ecosystem Dynamic Model

The Community Land Model (CLM) is the land surface compo-
nent within the Community Earth System Model (CESM, http://
www2.cesm.ucar.edu). CLM is designed to simulate the interac-
tion between terrestrial ecosystems and the climate system in
response to natural and human perturbation (Bonan, 1998;
Dickinson et al., 2006; Oleson et al., 2010). CLM contains
1 Figs. 1 and 2 were retrieved from a website which is developed by the authors
to visualize the software structures of CLM. For more information, please refer to
the website (http://cem-base.ornl.gov/CLM_Web/CLM_Web.html) or relevant arti-
cles (Xu et al., 2014, 2016).
numerous subroutines related to land biogeophysics, biogeo-
chemistry, hydrological cycle, human dimension, and ecosystem
dynamics (Fig. 1). Each subroutine is organized by other child
subroutines based on natural system functions. These subroutines
serve as interrelated components in CLM by interacting with vari-
ables that are globally accessible or subroutine explicit (Fig. 2). The
software system of CLM adopts many external numerical libraries
and parallel computing technologies in order to enhance the
model's computing performance. However, the software overhead
and the complexities of model structure become a barrier that
hinders the assessment of individual subroutines or processes and
how they might be improved in future models.

Recently, there has been a great demand to improve root rep-
resentations within large environmental models (Iversen, 2014;
McCormack et al., 2014; Warren et al., 2015). The narrow-
diameter, short-lived, fine roots of vascular plants - a below-
ground analog of leaves responsible for plant water and nutrient
acquisition - contribute disproportionately to ecosystem carbon,
water, and energy fluxes (McCormack et al., 2015a). However, the
distributions and functional dynamics of fine roots from ecosys-
tems spanning the globe are poorly resolved in terrestrial biosphere
models such as CLM (Warren et al., 2015). This has led to a
disconnection between belowground process data collected by

http://www2.cesm.ucar.edu
http://www2.cesm.ucar.edu
http://cem-base.ornl.gov/CLM_Web/CLM_Web.html


Fig. 2. The interactions among subroutines and variables within CNEcosystemDyn. For demonstration purpose, only a selected number of subroutines and related variables/
functions are shown. The yellow nodes in the graph denote subroutines and functions that are executed within CNEcosystemDyn. The blue nodes denote the global variables, and the
green nodes represent subroutine explicit variables. The links between the nodes describe how subroutines and variables access or are accessed by other components. In CNE-
cosystemDyn, its child subroutines (e.g., CNSoilLittVertTransp, CNGapMortality, NSummary and CNDecompAlloc) are executed in a particular sequence, and certain variables are
accessed or modified by multiple subroutines during the module execution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Y. Xu et al. / Environmental Modelling & Software 89 (2017) 97e105 99
empiricists and adequate model representations of those key root
processes, with implications for the accuracy of model projections
of ecosystem carbon, water, and nutrient cycling (Iversen, 2010;
McCormack et al., 2015b). This disconnection is due in part to
limited communication among empiricists and modelers, although
these relationships continue to steadily improve (e.g., Medlyn et al.,
2015). Empiricists also have limited access to the inner workings of
terrestrial biospheremodels, and therefore a poor understanding of
model representation of root functions, or their responses to
environmental conditions (Matamala and Stover, 2013). Hence,
new frameworks are needed to provide a means through which
root and rhizosphere ecologists can interface with a portion of a
terrestrial biosphere model, and conduct model experiments or
uncertainty analyses directly focused on their interests. A novel
interface could re-alignmodel and empirical experimental research
by guiding new measurements and inspiring empiricists to
contribute collected data directly to databases for modelling
applications.

Within CLM, there is a CNEcosystemDyn module (Fig. 1), which
simulates vegetation dynamics such as phenology, structure,
carbon-nitrogen allocation and composition, and respiration. The
module explicitly includes the essential root functions related to
carbon and nitrogen cycling. Therefore, it is desirable to develop a
standalone ecosystem dynamics model using the built-in functions
from CLM to: (1) engage both modelers and empiricists in process-
based assessment of model function via an approachable compu-
tational experimental setup; (2) enable model-experiment com-
parison to direct further model improvements, and (3) expedite
model structural enhancement to incorporate new knowledge from
empirical observations and field experiments. Since the standalone
model will contain all the key functions from the ecosystem dy-
namics module (CNEcosystemDyn) within CLM, and have to be in-
tegrated with a specific functional testing framework, we name the
standalone model as Virtual Ecosystem Dynamic Model, and use it
to better understand and validate root-related processes.

3. Methodology and key components

3.1. System architecture of functional test framework

The functional test framework is a software design that allows
modelers to test particular ecosystem functions in an environmental
model. Fig. 3 shows the system architecture and workflow of the
framework using CLM as an example. In this workflow, we first
applied several software engineering approaches to generate a
functional test module (e.g., CNEcosystemDyn) from the corre-
sponding subroutine in CLM. The generated module serves as a
standalone unit and can be launched by a functional test driver on
users' individual workstations. Next, we executed the original CLM
model and during the model simulation, the input and output data
streams of the corresponding CLM subroutine (i.e., CNEcosystemDyn)
was recorded. Then, a data dependency analysis was performed
using the input and output data streams extracted from the original
CLM simulation. The purpose of the data dependency analysis is to
guide variable initialization in order to drive the functional test
module in a multi-time-step simulation. Finally, a functional test
platform was built that integrates a user interface, functional test
driver, and data visualization to allow users to customize the
simulation processes and explore the modelling results.

3.2. Functional test module generation

To generate a functional test module, the first step is to reduce
the software dependency on parallel computing and external li-
braries. As Fig. 4 illustrates, we applied several methods including:
(1) use of a sequential version of MPI (Message Passing Interface),
(2) reconfiguration of the parallel IO library to enable sequential IO
access, and (3) installation of only a minimal subset of external



CLM Simulation

CNEcosystemDyn
(CLM Module)

Input Data 
Stream

Output Data 
Stream

Data Dependency
Analysis

Module-Specific

CNEcosystemDyn
(Functional Test Driver)

Module Output

Functional Test 
Platform

Constant

Time-dependent

Functional Test Module 
Generation

Extract InStream

Extract OutStream

Model Configuration
(User Interface)

Data Visualization

Variable Initialization

Fig. 3. System architecture and workflow of the functional test framework (using CNEcosystemDyn as an example).

Reduce Software 
Dependency

CLM 
Source Code

Compiler-assisted 
Workflow Analysis

Functional Test
Module

Use Sequential 
Version of MPI

Reconfiguration of 
Parallel IO Libraries

Installation of 
External Libraries

Decomposition of 
CLM Source Code

Recursive Search of 
Function Calls

Generate Input and 
Output Variable List

Initialization

Load InStream

Run Module

Extract OutStream

Fig. 4. Work flow of functional test module generation.

Y. Xu et al. / Environmental Modelling & Software 89 (2017) 97e105100
libraries, to generate a sequential version of CLM. Due to internal
biogeophysical and geochemical connections and software design
reasons, CLM simulations have to be executed within CESM with
other earth system components. In the software reconfiguration,
we removed several external libraries (e.g., MPI, NetCDF, PIO and
Coupler) from the original source code using proxy libraries or
components. But the key data structure used by CLM (e.g.,
clm_type) was still kept as the same as before. Hence, data used for
the original CLM simulation can be directly used in the functional
test module.

Next, a compiler-assisted workflow analysis was performed to
better understand the internal data structure and scientific work-
flow of CLM subroutines. For a given functional test module, we
applied a programming language parser tool to capture the input
and output data streams of the corresponding subroutine from the
original CLM simulation. The tool deconstructed the CLM source
code into identifiable tokens (i.e., function calls and variables).
During the scanning process, the tool recorded the name of these
tokens along with the information on how they access or are
accessed by other CLM function calls or variables. The purpose of
this step is to extract all the variables that are needed to drive the
functional test module.

The test module usually involves four components in a single-
time-step simulation: Initialization, Load InStream, Run Module,
and Extract OutStream. The Initialization component prepares the
initialization functions for the test module. Load InStream contains
a subroutine that loads the input variables to drive the test module.
Run Module contains an execution call to the test module. Extract
OutStream contains a subroutine that writes the model results into
output.

3.3. Data dependency analysis for functional test module

Although the software dependency of the functional test mod-
ule has been eliminated, the generated test module cannot be
directly used for experiments which usually require multi-time-
step simulations. The reason is that the output generated by a
functional test module at a particular time step does not include all
the information to drive the module at the next time step. This
creates problems for variable initialization as the functional test
module is separated from other modules (i.e., subroutines) in CLM.
To tackle this issue, we performed a data dependency analysis for
the functional test module by analyzing the relationship between
its input and output data streams from the original CLM simulation.
The purpose was to group the input variables into several cate-
gories based on their unique characteristics. The way the input
variables were categorized served as critical information for vari-
able initialization in a multi-time-step simulation.

Fig. 5 illustrates the workflow of the data dependency analysis.
We first generated the input and output data streams of the cor-
responding subroutine from the original CLM simulation for a given
period of time (e.g., one year). The simulation period can be
determined by the users based on experimental or study objectives.
We then analyzed the relationship between module output at each
time step x and module input at the next time step xþ 1. By
analyzing their relationships, we categorized the input variables of



Fig. 5. Data dependency analysis for a given functional test module. By analyzing the relationship between the input and output data streams from the original model (CLM)
simulation, the input variables which are needed to drive the functional test module (in a multi-time-step simulation) are categorized into three groups: (1) module-specific
variable; (2) constant variables, and (3) time-dependent variables. The three categories are then used to guide variable initialization for the functional test module.

Y. Xu et al. / Environmental Modelling & Software 89 (2017) 97e105 101
the functional test module into three main categories: (1) module-
specific variables, (2) constant variables, and (3) time-dependent
variables.

Module-specific variables are the input variables that can be
directly retrieved from module output. These variables appear in
both input and output of the functional test module, and the value
of each variable in the output at time step x remains the same in the
module input at time step xþ 1. Module-specific variables are not
modified by other subroutines in the original CLM simulation.
Hence, they only need to be initialized at the very first time step in a
multi-time-step simulation.

Constant and time-dependent variables are the input variables
whose values need to be retrieved from other subroutines. Hence,
their values need to be provided at each time step in the simulation
Fig. 6. Results of data dependency analysis for the CNEcosystemDyn module. The input vari
variables, and 40 time-dependent variables. Examples of module-specific variables include
the modelling process in CLM. Examples of constant variables include froot_leaf, leafcn and s
Examples of time-dependent variables include soilpsi, t10 and wf, which describe external
process. The constant variables refer to the ones whose values keep
constant during the simulation period. The time-dependent vari-
ables refer to the ones whose values change over time through the
simulation. Thus, constant variables need to be initialized only once
in a multi-time-step simulation, while the values of time-
dependent variables need to be provided at the beginning of each
individual time step.
3.4. Functional test platform

The functional test platform integrates a user interface, a func-
tional test driver, and a data visualization function (Fig. 3). The user
interface allows users to set the input variables by the three cate-
gories. The functional test module is launched once every time step
ables (750 in total) were categorized into 464 module-specific variables, 246 constant
totvegc, frootc and npool_to_leafn, which are constantly updated by CNEcosystemDyn in
tem-leaf, which describe the physiological characteristics of different vegetation types.
environmental conditions that change over time.



Fig. 7. Main user interface for the CNEcosysemDyn functional test module. “Category 1” refers to module-specific variables. “Category 2” refers to constant variables, and “Category
3” denotes time-dependent variables. Columns such as v1, v2, v3, etc., are used to represent the dimensions (e.g., vegetation types) of the variables. The variables are loaded through
external files prepared by the users. For Category 3, the number of columns in the external file equals the number of time-dependent variables (40 in this case study), and the
number of rows equals the number of total time steps for the simulation (17,519 in this case study2). The “Plot” function allows users to visualize the modelling results.

Y. Xu et al. / Environmental Modelling & Software 89 (2017) 97e105102
and the input variables are updated at the beginning of each time
step as required for each type of input variable. A multi-time-step
simulation generally works as follows: (1) At the very first time
step, the platform integrates module-specific, constant and time-
dependent variables, and organizes them as the input to drive the
functional test module; (2) The functional test module is then
launched to generate a module output; (3) The platform extracts
the values of module-specific variables from the output, and up-
dates the values of these variables for input at the next time step.
The values of time-dependent variables are also updated based on
the input data stream provided by the user; (4) The functional test
module is launched using the updated module input to generate
new output for the next time step; (5) The simulation process it-
erates until it reaches the total number of time steps defined by the
user. During the simulation process, the platform stores the module
output for each time step, and provides a GUI tool for data
visualization.
2 In this case study, we exported the input and output data stream for CNEco-
systemDyn subroutine from original CLM simulation for one year (i.e., 2008), which
were then used for data dependency analysis and functional test simulation. As
each time step in the original CLM equals half an hour, the total number of time
steps is thus (24/0.5)*365 ¼ 17,520. We removed the first time step in our analysis
because many variables were initialized after the first time step. Thus the total
number of time steps for the time-dependent variables is 17,519 in our case study.
4. Case study: CNEcosystemDyn

4.1. Data dependency analysis and module validation

We first performed the data dependency analysis on CNEcosy-
semDyn module using the input/output data streams from original
CLM simulation for a predefined period of time (one year in this
case study). As shown in Fig. 6, we categorized the input variables
(750 in total) into three groups, which consist of 464 module-
specific variables, 246 constant variables, and 40 time dependent
variables. The data dependency analysis benefits modelers and field
scientists in several ways. On one hand, modelers could better
assess the role of each input variable in CNEcosysemDyn based on its
derived category. The results help them better understand the hy-
potheses embedded in the model, and assist variable initialization
for experimental designs. On the other hand, the results could
engage field scientists by suggesting what variables (e.g., certain
constant and time-dependent variables that describe external
environmental conditions) need to be measured in order to facili-
tate model-data comparison.

To assist users in running the functional test module, we
developed a user interface for CNEcosystemDyn. The interface al-
lows users to configure the module input by uploading external
files (e.g., csv format). As Fig. 7 illustrates, the table under “Category
1” stores all the module-specific variables uploaded by a user, and



Table 1
Experimental design.

Experiment 1 Experiment 2

Variable froot_leaf Variable leafcn
Description Fraction of new fine root carbon (C) per new leaf carbon (unit: gC/gC) Description Leaf carbon (C) to nitrogen (N) ratio (unit: gC/gN)
Values froot_leaf ¼ 0.21

froot_leaf ¼ 0.42 (default)
froot_leaf ¼ 0.84

Values leafcn ¼ 10
leafcn ¼ 30.69 (default)
leafcn ¼ 60

Y. Xu et al. / Environmental Modelling & Software 89 (2017) 97e105 103
the table under “Category 2” stores all the constant variables.
“Category 3” denotes the time-dependent variables, which are
organized as time-series data in the external file.

We next verified that the CNEcosystemDyn module could
reproduce themodelling results of the corresponding subroutine in
CLM. In particular, we prepared the three types of input variables
using the default values extracted from the original CLM simula-
tion. The input variables were then used to drive the functional test
module (i.e., CNEcosystemDyn) in a multi-time-step simulation.
Then, we examined the values of the output variables generated by
the functional test module and the corresponding subroutine from
the original CLM simulation. By comparing the two sets of output,
we found that the functional test module could replicate the results
of the original CLM simulation at each particular time step (with a
matching rate of 100 percent). Once the result from the functional
test module has been validated using the default values from CLM
simulation, the functional test module can be used to investigate
various model responses and sensitivities to the input variables in
the three categories.
4.2. Example application at ORNL FACE

As an example application of the CNEcosystemDyn functional
testmodule, we applied themodule to simulations of the Oak Ridge
National Laboratory Free Air CO2 Enrichment (ORNL FACE) experi-
ment. We used a simulation of CLM4.5 applied to the ambient CO2
treatment ORNL FACE following the method and protocol of Walker
et al. (2014) and Norby et al. (2015). For demonstration purposes,
we tested the module by modifying two plant functional type (PFT)
parameters (i.e., Category 2), leafcn and froot_leaf, and investigated
their effect on root related carbon and nitrogen processes. Table 1
shows the experimental design. For each experiment, we set
three different values (with one as the default value from bench-
mark case in the original CLM simulation) to the corresponding
input variable and then compare the modelling results.3

In each experiment, we compared the benchmark case with the
other two cases (test cases) to discover which output variables
were most sensitive to each input constant variable. The purpose
was to explore the effect of the input variable on the modelling
result. For each output variable, we measured the maximum rela-
tive difference (RDmax) and normalized root-mean square deviation
(NRMSDÞ between the benchmark case and each of the other two
cases. For each output variable, given a benchmark case
Y ¼ fy1; y1; … yng and a test case bY ¼ fby1; by1; …

byng, with n
being the total number of time steps, the two measures were
calculated as follows:
3 The CNEcosystemDyn functional test module is able to simulate root-related
processes for a variety of vegetation types (e.g, needleleaf evergreen tree, broad-
leaf evergreen tree, broadleaf deciduous tree, and so forth. Please see Oleson et al.,
2010 for more details). As an example application at ORNL FACE, this study only
compared the modelling results for broadleaf deciduous tree.
RDmax ¼ max
�����y1 � by1

y1

����;
����y2 � by2

y2

����;…;

����yn � byn
yn

����
�

(1)

NRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1
ðyt�bytÞ2
n

r
Y

(2)

For demonstration purpose, we present several key output
variables with considerable changes in the two experiments. In the
first experiment (Table 2), we notice that changing froot_leaf from
its default value to 0.21 or 0.84 has a considerable impact on several
variables (e.g., npool_to_frootn_storage, cpool_to_frootc_storage,
frootn_storage, and frootc_storage) that represent the allocation and
storage of carbon and nitrogen in the fine roots. However, as
illustrated in Table 3, changing leaf_cn from its default to 10 or 60
would only have a notable impact on several output variables at the
leaf level (e.g., leafn_to_retransn, retransn, tempmax_retransn,
npool_to_leafn_storage, and leafn_storage) rather than the root level.
The comparisons in the two experiments help users better assess
the impact of certain PFT constants on root-related processes in the
module.

4.3. Data visualization

In order to facilitate model comparison, we developed a visu-
alization function in our framework to allow users to compare the
output variables among different experiments. A user could choose
multiple output files generated by the functional test module with
different input settings, and specify the output variable that he/she
wants to explore. For example, Fig. 8 shows the comparison result
for variable cpool_to_leafc_storage in experiment 1 (as discussed in
Tables 1 and 2). The result suggests that increasing the value of
froot_leaf in the simulation would result in an overall increase of
cpool_to_leafc_storage, which represents the allocation to the car-
bon storage in the fine roots. The visualization could help users
assess model responses during different seasons, and also explore
the daily variations by zooming into the plot.

5. Conclusions and future work

This paper presents our effort to build a functional test frame-
work for environmental model development. A Virtual Ecosystem
Dynamic Model based on CLM was developed and used as a case
study to demonstrate how the proposed framework could assist
environmental scientists to better understand particular ecosystem
processes (e.g., root-related processes) without worrying about the
complexities in software configurations. The functional test
framework brings new opportunities to process-based model
development. Users could generate functional test modules to
understand the inner workings of an environmental model, and
customize their experiments by manipulating the three types of
input variables (i.e., module-specific, constant and time-dependent
variables) based on their own research interests and goals. The



Table 2
Model comparisons of selected variables in experiment 1 (the ‘þ’ and ‘-’ signs describe if RDmax are attributed to the increase or decrease of the output variable in the test case
as compared to the bench mark case).

Variable Name Description Comparison Results

froot_leaf ¼ 0.21
vs.
froot_leaf ¼ 0.42 (default)

froot_leaf ¼ 0.84
vs.
froot_leaf ¼ 0.42 (default)

RDmax NRMSD RDmax NRMSD

npool_to_frootn_storage allocation to fine root N storage (unit: gN/m2/s) 46.90 - 1.01 79.04 þ 1.71
cpool_to_frootc_storage allocation to fine root C storage (unit: gC/m2/s) 46.90 - 1.01 79.04 þ 1.71
frootn_storage fine root N storage (unit: gN/m2/s) 25.19 - 0.18 42.47 þ 0.31
frootc_storage fine root C storage (unit: gC/m2/s) 25.19 - 0.18 42.47 þ 0.31
cpool_to_leafc_storage allocation to leaf C storage (unit: gC/m2/s) 6.22 þ 0.13 10.48 - 0.23

Table 3
Model comparisons of selected variables in experiment 2.

Variable Name Description Comparison Results

leafcn ¼ 10
vs.
leafcn ¼ 30.69 (default)

leafcn ¼ 60
vs.
leafcn ¼ 30.69 (default)

RDmax NRMSD RDmax NRMSD

leafn_to_retransn leaf N to retranslocated N pool (unit: gN/m2/s) 536.27 þ 30.52 126.51 - 7.2
retransn plant pool of retranslocated N (unit: gN/m2) 227.19 þ 1.07 53.54 - 0.25
tempmax_retransn temporal annual max of retranslocated N pool (unit: gN/m2) 227.19 þ 0.94 6.32 - 0.02
npool_to_leafn_storage allocation to leaf N storage (unit: gN/m2/s) 207.00 þ 4.47 48.83 - 1.05
leafn_storage leaf N storage (unit: gN/m2) 111.22 þ 0.81 26.24 - 0.19

Fig. 8. The comparison of modelling results based on the visualization capability in the functional test framework. The upper figure illustrates the values of an output variable
cpool_to_frootc_storage based on the three input settings (froot_leaf ¼ 0.21, froot_leaf ¼ 0.42 and froot_leaf ¼ 0.84) in experiment 1 (discussed in Tables 1 and 2). The bottom figure
shows the zoom-in part of the top figure. The visualization function enables users to examine the model responses during different seasons (e.g., upper figure), and explore the daily
variations (i.e., bottom figure).

Y. Xu et al. / Environmental Modelling & Software 89 (2017) 97e105104



Y. Xu et al. / Environmental Modelling & Software 89 (2017) 97e105 105
customized models can be used to verify and validate internal
environmental processes using multiscale observational datasets
and field measurement. This would yield valuable insights into
model responses, and offer important information for model
development and future improvement.

In the future, we plan to broaden our scope by developing a
more comprehensive platform that incorporates multiple func-
tional test modules within CLM or other environmental models.
The functional test platform will also incorporate many new ca-
pabilities: (1) a data synthesis function based on machine learning
techniques that allows users to simulate unobserved input vari-
ables (e.g., time-dependent variables) based on the observation
data at hand; (2) sensitivity analysis for model evaluation and
uncertainty quantification; (3) a cloud-based cyberinfrastructure
for observational data hosting and model-data comparison. The
new platform will serve as a testbed for multi-scale and process-
based model exploration and validation.

Acknowledgements

This work was supported by the Office of Biological and Envi-
ronmental Research in the United States Department of Energy's
Office of Science. This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy.

References

Arnold, T.R., 2013. Procedural knowledge for integrated modelling: towards the
modelling playground. Environ. Model. Softw. 39, 135e148.

Bergez, J.-E., Chabrier, P., Gary, C., Jeuffroy, M.-H., Makowski, D., Quesnel, G.,
Ramat, E., Raynal, H., Rousse, N., Wallach, D., 2013. An open platform to build,
evaluate and simulate integrated models of farming and agro-ecosystems. En-
viron. Model. Softw. 39, 39e49.

Bonan, G.B., 1998. The land surface climatology of the NCAR land surface model
coupled to the NCAR Community Climate Model. J. Clim. 11, 1307e1326.

Dickinson, R.E., Oleson, K.W., Bonan, G., Hoffman, F., Thornton, P., Vertenstein, M.,
Yang, Z.-L., Zeng, X., 2006. The community land model and its climate statistics
as a component of the community climate system model. J. Clim. 19,
2302e2324.

Granell, C., DíAz, L., Schade, S., Ostl€aNder, N., Huerta, J., 2013. Enhancing integrated
environmental modelling by designing resource-oriented interfaces. Environ.
Model. Softw. 39, 229e246.

Iversen, C.M., 2010. Digging deeper: fine-root responses to rising atmospheric CO2
concentration in forested ecosystems. New Phytol. 186 (2), 346e357.
Iversen, C.M., 2014. Using root form to improve our understanding of root function.
New Phytol. 203 (3), 707e709.

Matamala, R., Stover, D.B., 2013. Introduction to a Virtual Special Issue: modeling
the hidden halfethe root of our problem. New Phytol. 200 (4), 939e942.

Medlyn, B.E., Zaehle, S., De Kauwe, M.G., Walker, A.P., Dietze, M.C., Hanson, P.J.,
Hickler, T., Jain, A.K., Luo, Y., Parton, W., Prentice, I.C., Thornton, P.E., Wang, S.,
Wang, Y.-P., Weng, E., Iversen, C.M., McCarthy, H., Warren, J.M., Oren, R.,
Norby, R.J., 2015. Using ecosystem experiments to improve vegetation models.
Nat. Clim. Change 5, 528e534.

McCormack, M.L., Dickie, I.A., Eissenstat, D.M., Fahey, T.J., Fernandez, C.W., Guo, D.,
Helmisaari, H.S., Hobbie, E.A., Iversen, C.M., Jackson, R.B., 2015a. Redefining fine
roots improves understanding of below-ground contributions to terrestrial
biosphere processes. New Phytol. 207, 505e518.

McCormack, M.L., Crisfield, E., Raczka, B., Schnekenburger, F., Eissenstat, D.M.,
Smithwick, E.A., 2015b. Sensitivity of four ecological models to adjustments in
fine root turnover rate. Ecol. Model. 297, 107e117.

McCormack, M.L., Gaines, K.P., Pastore, M., Eissenstat, D.M., 2014. Early season root
production in relation to leaf production among six diverse temperate tree
species. Plant Soil 389, 121e129.

Myers, C.R., 2003. Software systems as complex networks: structure, function, and
evolvability of software collaboration graphs. Phys. Rev. E 68 (4), 046116.

Norby, R.J., Oren, R., Boden, T.A., De Kauwe, M.G., Kim, D., Medlyn, B.E., Riggs, J.S.,
Tharp, M.L., Walker, A.P., Yang, B., Zaehle, S., 2015. Phase 1 free air CO2
enrichment model-data synthesis (FACE-MDS). Meteorol. Data 015. http://
dx.doi.org/10.3334/CDIAC/FACE-MDS/MET.01.

Oleson, K.W., Lawrence, D.M., Gordon, B., Flanner, M.G., Kluzek, E., Peter, J., Levis, S.,
Swenson, S.C., Thornton, E., Feddema, J., 2010. Technical Description of Version
4.0 of the Community Land Model (CLM).

Wang, D., Janjusic, T., Iverson, C., Thornton, P., Karssovski, M., Wu, W., Xu, Y., 2015.
A scientific function test framework for modular environmental model devel-
opment: application to the Community Land Model. In: Proceedings of the 2015
International Workshop on Software Engineering for High Performance
Computing in Science. New Jersey, USA, pp. 16e23.

Wang, D., Xu, Y., Thornton, P., King, A., Steed, C., Gu, L., Schuchart, J., 2014.
A functional test platform for the Community Land Model. Environ. Model.
Softw. 55, 25e31.

Walker, A.P., Hanson, P.J., De Kauwe, M.G., Medlyn, B.E., Zaehle, S., Asao, S.,
Dietze, M., Hickler, T., Huntingford, C., Iversen, C.M., 2014. Comprehensive
ecosystem model-data synthesis using multiple data sets at two temperate
forest free-air CO2 enrichment experiments: model performance at ambient
CO2 concentration. J. Geophys. Res. Biogeosci. 119 (5), 937e964.

Warren, J.M., Hanson, P.J., Iversen, C.M., Kumar, J., Walker, A.P., Wullschleger, S.D.,
2015. Root structural and functional dynamics in terrestrial biosphere mod-
elseevaluation and recommendations. New Phytol. 205 (1), 59e78.

Xu, Y., Wang, D., Janjusic, T., Xu, X., 2014. A web-based visual analytic system for
understanding the structure of Community Land Model. In: Proceedings of the
2014 International Conference on Software Engineering Research and Practice.

Xu, Y., Wang, D., Janjusic, T., Wu, W., 2016. A web-based visual analytic framework
for understanding large scale environmental models: a case study for the
Community Land Model. Comput. Sci. Eng. (under revision).

Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W., 2010. Using the k-core decomposition
to analyze the static structure of large-scale software systems. J. Supercomput.
53 (2), 352e369.

http://refhub.elsevier.com/S1364-8152(16)30937-9/sref2
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref2
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref2
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref3
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref3
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref3
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref3
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref3
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref4
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref4
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref4
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref5
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref5
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref5
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref5
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref5
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref7
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref7
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref7
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref8
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref8
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref8
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref9
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref9
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref9
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref9
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref11
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref11
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref11
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref11
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref11
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref12
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref12
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref12
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref12
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref13
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref13
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref13
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref13
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref14
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref14
http://dx.doi.org/10.3334/CDIAC/FACE-MDS/MET.01
http://dx.doi.org/10.3334/CDIAC/FACE-MDS/MET.01
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref16
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref16
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref16
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref18
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref18
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref18
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref18
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref20
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref20
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref20
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref20
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref20
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref21
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref21
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref21
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref22
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref22
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref22
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30937-9/sref23

	Building a Virtual Ecosystem Dynamic Model for Root Research
	1. Introduction
	2. The Community Land Model and need for a Virtual Ecosystem Dynamic Model
	3. Methodology and key components
	3.1. System architecture of functional test framework
	3.2. Functional test module generation
	3.3. Data dependency analysis for functional test module
	3.4. Functional test platform

	4. Case study: CNEcosystemDyn
	4.1. Data dependency analysis and module validation
	4.2. Example application at ORNL FACE
	4.3. Data visualization

	5. Conclusions and future work
	Acknowledgements
	References


