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ABSTRACT
In recent years, call detail records (CDRs) have been widely used in
human mobility research. Although CDRs are originally collected
for billing purposes, the vast amount of digital footprints gener-
ated by calling and texting activities provide useful insights into
population movement. However, can we fully trust CDRs given the
uneven distribution of people’s phone communication activities in
space and time? In this article, we investigate this issue using a
mobile phone location dataset collected from over one million
subscribers in Shanghai, China. It includes CDRs (~27%) plus other
cellphone-related logs (e.g., tower pings, cellular handovers) gen-
erated in a workday. We extract all CDRs into a separate dataset in
order to compare human mobility patterns derived from CDRs vs.
from the complete dataset. From an individual perspective, the
effectiveness of CDRs in estimating three frequently used mobility
indicators is evaluated. We find that CDRs tend to underestimate
the total travel distance and the movement entropy, while they
can provide a good estimate to the radius of gyration. In addition,
we observe that the level of deviation is related to the ratio of
CDRs in an individual’s trajectory. From a collective perspective,
we compare the outcomes of these two datasets in terms of the
distance decay effect and urban community detection. The major
differences are closely related to the habit of mobile phone usage
in space and time. We believe that the event-triggered nature of
CDRs does introduce a certain degree of bias in human mobility
research and we suggest that researchers use caution to interpret
results derived from CDR data.
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1. Introduction

The advent of so-called ‘big data era’ offers many new opportunities to study human
mobility using various types of massive digital footprints, such as geo-tagged social
media data (Batty 2010). Despite those exciting discoveries that reveal the pulse of the
city, there have been debates regarding the biases that come with the data. For
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instance, studies report that distribution of social media users is predominantly uneven
in terms of geography, gender, and race/ethnicity (Mislove et al. 2011, Hecht and
Stephens 2014).

Mobile phone location data, collected by mobile network operators (MNOs), have also
been an appealing data source, given the unprecedented scale of digital footprints it
offers. The type of mobile phone location data used in the most existing studies is
referred to as call detail records (CDRs), which are generated by phone communication
activities (i.e., make/receive a phone call, send/receive a text message). For billing
purposes, CDRs keep track of the relevant information (e.g., caller/callee, time, duration)
of each event, plus a unique identifier of the cell tower that handles the communication.

Many valuable findings regarding human activity and their interactions with the
urban environment have been reported since CDRs became prevalent in the research
community during recent years (e.g., González et al. 2008, Song et al. 2010a, 2010b).
However, most previous studies did not discuss how representative their data (i.e., CDRs)
were and the applicability of their analysis results to the entire population. Also, few
studies have examined the questions that CDRs might not be appropriate to address
(see Kang et al. 2012 for an example). Are we overly optimistic about the usefulness of
CDRs and the validity of our conclusions? Like what have been discussed, debated, and
acknowledged in the social media community, the representativeness of CDRs also
needs to be carefully examined.

As pointed out by Becker et al. (2013), CDRs are coarse in space and sparse in time. In
large cities, the spatial granularity at the cell tower level may not be a major drawback as
cell towers are usually densely distributed across an urban area. What really matter are
the uneven distribution of people’s phone communication activities in space and time.
On one hand, people are more likely to contact others at certain places, such as home or
work place, and it is highly possible that these locations account for only a fraction of all
visited locations. On the other hand, depending on how actively one engages in phone
communication, the total number of CDRs each subscriber generates varies significantly.
The dataset used in this research reveals that the population size drops with the
increased intensity of phone-related activities (Figure 1). About 17% subscribers in our
dataset have two or fewer CDR records in a day and over 38% subscribers have fewer
than seven CDR records in a day. Hence, whether the mobility pattern of subscribers
without heavy phone usage can be properly characterized is indeed questionable. One
may argue that this problem can be solved by collecting CDRs over a longer period of
time, such as a week, a month, or even longer. Although this workaround does help
increase sample size, the uneven spatiotemporal distribution of digital footprints caused
by people’s habit of mobile phone usage is not addressed. The ‘quiet minority’ who
rarely make use of mobile device remain underrepresented.

This research takes a first step to evaluate the representativeness of CDRs in human
mobility characterization, using a mobile phone location dataset that includes both
CDRs and non-CDR footprints. The non-CDR footprints are generated by events irrele-
vant to phone communication, such as moving out of the service area of a cell tower,
active pinging from cell tower, etc. By extracting the CDR records into a separate
dataset, we are able to quantitatively evaluate the effectiveness of CDRs in human
mobility analysis, from both an individual perspective and a collective perspective. The
findings of this research not only facilitate a better understanding of CDR data but also
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prompt us to rethink some conclusions of human mobility patterns derived from CDR
data that have been reported in the literature.

The remainder of this article is organized as follows. The next section discusses the
existing research related to this study. Section 3 presents the study area and the mobile
phone location data used in this research. In Section 4, we adopt an individual perspec-
tive and evaluate the effectiveness of CDRs in estimating some most frequently used
mobility indicators. We then take a collective approach in Section 5 and examine the
performance of CDRs in distance decay effect analysis and urban community detection.
We conclude and discuss this research in Section 6.

2. Relevant research

This section discusses some relevant research in the following three areas: (1) CDRs and
human mobility, (2) CDRs and urban dynamics, and (3) uncertainty issue.

2.1. CDRs and human mobility

CDRs have helped enhance our knowledge of individual human mobility considerably in
recent years. A large body of literature focuses on individual activity space, which
denotes the spatial extent of people’s daily activities (Golledge and Stimson 1997).
Understanding individual activity space has profound implications in the real world,
such as accessibility to healthcare facilities (Sherman et al. 2005), environmental expo-
sure (Perchoux et al. 2013), etc. Note that the term of activity space is related to several
other concepts, for instance, awareness space (Brown and Moore 1970), action space
(Horton and Reynold 1971), and space-time prism (Hägerstrand 1970).

Activity space can be characterized from individual trajectories which reflect a per-
son’s movement in space over time. A number of measures have been used to describe
spatiotemporal characteristics of individual trajectories, such as the daily range of travel,
movement radius, and movement entropy (e.g., Yuan et al. 2012). Two dimensional

Figure 1. Distribution of subscribers under different intensity levels of phone communication.
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measures, such as standard deviational ellipse (SDE), can be used to describe the range
and direction of one’s activity space (e.g., Zenk et al. 2011). Based on these mobility
indicators, statistical analyses have been performed to compare activity space of people
in different social groups (e.g., age, gender, see Kang et al. 2010, Yuan et al. 2012) or
people at different locations (Becker et al. 2013). In addition, individual trajectories
collected over a long term allow us to extract meaningful anchor points of one’s activity
space, such as home or work locations (e.g., Calabrese et al. 2010a, Ahas et al. 2010), and
to examine people’s activity patterns around anchor points (e.g., Xu et al. 2015).

Besides activity space research, CDRs have been utilized by physicists to gain new
insights into the nature of human travel. In the past, many studies assumed that human
movements were associated with a large degree of randomness and could be explained
by the random walk model or the Lévy flight model (Brockmann et al. 2006, Rhee et al.
2011). However, analysis results from CDR trajectories have suggested that human
movements often follow reproducible patterns (González et al. 2008) and are highly
predictable (Song et al. 2010a, 2010b).

Despite substantial progress reported in the literature, this study argues that the
representativeness of individual trajectories derived from CDRs are strongly influenced
by people’s habit of using mobile phones at certain locations and time in a day. For
example, CDR trajectories of a traveling salesperson who talks to his/her customers on a
mobile phone regularly may well depict his/her daily movements, whereas CDR trajec-
tories of a person who uses his/her phone occasionally should not be used to under-
stand his/her mobility pattern in space and time. As a result, it is important to
investigate to what extent we can trust the mobility indicators derived from CDR
trajectories and the conclusions drawn from these indicators. It should be noted that
using CDRs collected over a long period of time as a workaround cannot address this
issue as people who rarely engage in phone communication remain underrepresented.

2.2. CDRs and urban dynamics

Instead of focusing on individual trajectories, many studies adopt a collective approach
to uncover varying mobility patterns. Some frequently used indicators include Erlang
value (i.e., the total call traffic volume in one hour), number of phone calls/text mes-
sages, number of active subscribers, etc. For instance, CDRs have been used to quanti-
tatively measure different levels of popularity in New York City in terms of the density
and distribution of aggregate phone calls (Girardin et al. 2009). Distinct patterns of
mobility variation throughout different time periods in a day, or different days in a week
also can be extracted and compared using methods such as K-means clustering (Reades
et al. 2007), eigen decomposition (Calabrese et al. 2010b), dynamic time warping (Yuan
and Raubal 2012), etc. In addition to mobility pattern analysis, aggregate population
flows among cell towers serve as an indication of human interactions in urban space,
which enable us to detect urban communities with strong internal interactions (Gao
et al. 2013). Moreover, some recent studies utilize the characteristics of people’s phone
communication activities and develop innovative methodologies to address problems
that are usually tackled by other approaches. For example, Pei et al. (2014) developed a
new method for urban land use classification based on normalized hourly call volume
and the total call volume.

4 Z. ZHAO ET AL.
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Similar to individual human mobility research, many CDR-based urban dynamics
studies also make an implicit assumption that phone communication records can
serve as a direct indication of human activity intensity, which is debatable. A careful
evaluation of the representativeness of CDRs can help us answer this type of
questions.

2.3. Uncertainty issue

Uncertainty has been an important research topic in GIScience (Goodchild and Gopal
1989, Zhang and Goodchild 2002). It is associated with several related concepts, such as
accuracy, precision, consistency, completeness, to name a few (Veregin 1999).
Considerable efforts have been made to visualize and analyze spatiotemporal uncertain-
ties (Pang 2001, MacEachren et al. 2005, Delmelle et al. 2014). Many critical concerns
have been raised regarding how uncertainties could influence our findings (e.g., Griffith
et al. 2007, Zinszer et al. 2010, Jacquez 2012) and the risk level in a decision making
process (Gollege and Stimson 1997).

The issue of uncertainty is often examined in the field of environmental modeling
(Refsgaard et al. 2007, Ascough II et al. 2008). Despite limited discussions in the
literature, uncertainties embedded in mobile phone location data with respect to
their spatiotemporal granularity should be examined. From the spatial perspective,
spatial resolution of CDR data often is limited to the cell tower level (Becker et al.
2013). In urban areas where cell towers are sparsely distributed, geographic position-
ing becomes less precise (Bengtsson et al. 2011). Based on a mobile phone location
dataset obtained from AirSage, Liu et al. (2008) evaluated the accuracy of derived
travel speed against observed data collected by loop detectors and concluded that
the consistency between two datasets varied to certain extent. Interestingly, Bar-Gera
(2007) reported that speed calculated from the mobile phone location data is accep-
table for practical applications. Another major issue that generates spatial uncertainty
is the occurrence of signal jump, which occurs when a mobile device switches back
and forth among a set of neighboring cell towers due to similar intensity of signal
strength (Iovan et al. 2013). Xiong et al. (2012) took this issue into account by dividing
a study area into non-overlapping regions and mark each region in terms of the
possibility of signal jump. From the temporal perspective, the locations of a subscri-
ber between two phone communication events are uncertain. Within a two-hour
period, the potential area that a subscriber can visit may cover the entire city. With
CDR data, the interval between two phone communication activities is often longer
than 2 hours, which leads to a large degree of uncertainty in human mobility analysis.
The temporal granularity of CDR data can be improved with additional data such as
active pinging collected by mobile network operators to reduce uncertainties
between two phone communication records. Considering both the spatial and the
temporal domains, Couronne et al. (2011) proposed an indicator to assess mobility as
well as uncertainty.

The uncertainty issue itself cannot be fully prevented. Our challenges are to
understand how uncertainties could result in imperfect knowledge and recognize
‘which cannot be known’ (Couclelis 2003). This is the fundamental objective of this
article.
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3. Data

Our study area is Shanghai, one of the largest cities in China. In this section, we
introduce some background information of Shanghai and the mobile phone location
dataset collected in this city.

3.1. Area of study

Shanghai has a resident population of 23.8 million as of 2012 (Shanghai Municipal
Statistics Bureau 2012), which makes it the largest city in China by population.
Shanghai is one of the global financial centers and the busiest container port in the
world (World Shipping Council 2013). Its annual gross domestic product (GDP) also ranks
No.1 in China in 2012 (National Bureau of Statistics of China 2012).

Located in the central east coast of China, Shanghai has a total area of 6,340.5 square
kilometers (Shanghai Municipal Statistics Bureau 2012). It consists of 16 administrative
districts and the Chongming County (Figure 2a). Among those districts, eight of them on
the west bank of the Huangpu River (i.e., Huangpu, Xuhui, Jingan, Changning, Yangpu,
Hongkou, Putuo, and Zhabei), also known as Puxi, are referred to as the downtown area
of Shanghai (Figure 2b). Over the past two decades, the economy of the Pudong District,
situated on the east bank of the Huangpu River, has been growing rapidly, with its
famous zone of Lujiazui being widely considered as the financial center of Shanghai.

Figure 2. (a) Shanghai and its administrative districts. The orange areas represent the “Puxi” region,
the downtown area of Shanghai. (b) Eight administrative districts in the “Puxi” region. “Puxi” and the
Pudong districts are divided by the Huangpu River.
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3.2. Dataset

The mobile phone location dataset used in this study is collected by a major MNO in
China. It is obtained through a joint research collaboration. It includes the records
generated by 1,252,797 subscribers on a workday in 2012. Different from a CDR dataset,
this dataset contains both CDRs and actively generated logs, recorded with seven event
codes listed in Table 1. This particular MNO operated over 33,000 cell towers in Shanghai
and the cell tower ID associated with each record indicated the approximate location
where each event took place. It should be pointed out that, to protect individual privacy,
we do not have access to any personal information (e.g., age, gender, phone number)
and the spatial granularity is restricted at the cell tower level.

Figure 3 illustrates the total number of each event recorded during every hour. Given
the way different events are triggered, those numbers vary differently throughout the
day. In general, except periodic updates (PU), very few records are generated between
midnight and 6:00. At 6:00–7:00, the volumes of regular updates (RU) and cellular
handover (CH) grow significantly due to population travel. As a result, the number of
active pinging from towers, recorded as PU, declines accordingly. The peaks of RU at
8:00–9:00 and 17:00–18:00 correspond to the morning and evening rush hour, respec-
tively. Similar to RU, the numbers of IN and OT events start to increase from 6:00–7:00.
ON and OF events together account for a very small portion of the data as turning
mobile phone on and off frequently is not a common practice.

3.3. Data processing

Various types of events recorded in this dataset offer a unique opportunity to under-
stand the bias of CDRs in human mobility analysis. For the purpose of comparisons, we
extract all CDRs (i.e., IN and OT events) from every subscriber and store them in a
separate dataset. Therefore, each subscriber has two sets of data: CDRs only and the

Table 1. Summary of event codes.

Code Event Description
Avg. no. of records
per subscriber

RU Regular update Regular update triggered by moving from the service area of a cell
tower to that of another tower.

12.51

PU Periodic update Periodic update triggered by tower pinging if a subscriber has been
‘silent’ (i.e., no other events listed in this table is detected) for a
certain time period. However, the specific condition (e.g., duration
of silence) that triggers periodic update is irregular. In addition,
mobile phones which are turned off or disconnected from the
cellular network do not receive pinging signals from the cellular
network.

4.88

OT Phone
communication
(outbound)

Subscriber makes a phone call or sends a text message. 4.45

ON Power on Mobile phone is turned on and connected to cellular network. 0.62
OF Power off Mobile phone is turned off and disconnected from cellular network. 0.39
IN Phone

communication
(inbound)

Subscriber receives a phone call or a text message. 14.67

CH Cellular handover Transfer of an ongoing phone call from one cell tower to another
due to a subscriber’s movements.

5.45

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7

D
ow

nl
oa

de
d 

by
 [

Y
an

g 
X

u]
 a

t 2
0:

38
 2

6 
Ja

nu
ar

y 
20

16
 



entire set of records. In the remainder of this article, we call these two datasets as the
CDR group and the complete group, respectively.

As a subset of the data, the temporal variation of the total number of records in
the CDR group mirrors that in the complete group (Figure 4), although the former
does not reveal a striking upsurge during 17:00–18:00. For each subscriber, the CDR
ratio (i.e., number of CDRs/number of total records) is calculated. The average CDR
ratio is 43.09%, with a median value of 41.18%. However, depending on how
actively one engages in phone communication activities, this number varies sig-
nificantly (Figure 5).

Figure 4. Temporal variation of the total number of records in the CDR group and the complete group.

Figure 3. Temporal variation of the total number of each event.
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4. Individual human mobility

This section focuses on evaluating the representativeness of CDRs in individual daily
mobility pattern analysis. We aim to answer the question: compared with the
complete set of footprints, how well do CDR footprints characterize one’s daily
mobility pattern? We focus on three basic properties of human mobility: distance,
range, and heterogeneity. Hence, the following three frequently used mobility indi-
cators are chosen in this study: (1) the total travel distance, (2) radius of gyration,
and (3) movement entropy. In the evaluation process, the complete group is con-
sidered as the control group. To tackle our research question, two additional data
processing steps are performed.

First, if the footprints generated by a subscriber in a day do not provide sufficient
temporal coverage (e.g., people who kept their mobile phone turned off most of the
time), this subscriber should be removed from the complete dataset that will be used
as a benchmark to evaluate the representativeness of CDR footprints. We divide the
day into four six-hour periods (0:00–6:00, 6:00–12:00, 12:00–18:00, and 18:00–24:00)
and only those subscribers with at least one footprint in each six-hour period are
included in this study. After this step, a total of 686,642 subscribers remain in the
complete group.

Second, as discussed in Section 3.3, the range of CDR ratios varies significantly among
the subscribers and the CDR ratio could be a critical factor in the evaluation process. For
people who use their mobile phone to communicate frequently, mobility indicators
derived from the CDR group and the complete group should be very close. On the
contrary, for people who travel a lot but rarely use their phone to communicate, their
CDRs are likely to yield biased mobility indicators. In order to understand how the CDR
ratio influences the estimation of mobility indicators, we further group the 686,642
subscribers into four classes by their CDR ratio (Table 2).

Figure 5. Distribution of subscribers under different ratio of CDRs.
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D
ow

nl
oa

de
d 

by
 [

Y
an

g 
X

u]
 a

t 2
0:

38
 2

6 
Ja

nu
ar

y 
20

16
 



4.1. Total travel distance

The total travel distance is a basic measure of individual mobility. It is calculated as the
sum of the Euclidian distance between each pair of consecutive footprints. For each
subscriber, we compute two values of the total travel distance, DCDR and Dcomplete, based
on the CDR group and the complete group, respectively. The results of all four sub-
scriber classes are shown in Figure 6. The horizontal axis and the vertical axis represent
the complete group and the CDR group, respectively. In this figure, the horizontal axis is
binned with a bandwidth of 0.1 km. Subscribers are grouped in terms of (1) class
assignment based on CDR ratio (Table 2), and (2) the 0.1-km bin that Dcomplete falls in.
Then, for all subscribers in each bin, the average value of DCDR is computed and plotted.
Figure 6 allows us to examine the representativeness of CDRs via visual inspection. If
CDRs are representative of the complete group, points on Figure 6 should be close to
the diagonal line from lower-left to upper-right. On the contrary, a large deviation from
the diagonal line leads to an indication that CDRs tend to underestimate the total travel
distance. For this mobility indicator, an overestimation is not possible since DCDR cannot
be greater than Dcomplete.

Table 2. Four subscriber classes based on their CDR ratio.
Class CDR ratio (%) Number of subscribers

A 75–100 60,519
B 50–75 173,940
C 25–50 251,187
D 0–25 200,996

Figure 6. Total travel distance (complete group) vs. average total travel distance (CDR group).
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Several interesting findings regarding the effectiveness of CDRs in estimating the
total travel distance are revealed in Figure 6. First, all four classes suggest that DCDR and
Dcomplete have a very high positive correlation. This is confirmed by both Pearson
correlation coefficient and Spearman correlation coefficient (Table 3). Second, as the
CDR ratio declines (from Class A to Class D), points in Figure 6 deviate more from the
diagonal. To quantify the level of underestimation, we fit points in each subscriber class
with a linear regression model: y ¼ αþ βx, using Dcomplete as the independent variable x
and DCDR as the dependent variable y. Provided that DCDR must have a value of 0 if
Dcomplete ¼ 0, we enforce α to be 0 in the linear regression model. The regression
coefficient β indicates the relationship between DCDR and Dcomplete. Since the regression
model does not have an intercept, 1� β can be interpreted as the level of under-
estimation, which implies how well CDRs can estimate one’s total travel distance. It is
evident that CDRs tend to significantly underestimate the total travel distance even for
subscribers in Class A, whose CDRs account for at least 75% of all footprints. On average,
DCDR of Class A subscribers is 35.3% shorter than his/her Dcomplete (Table 4). This regres-
sion coefficient β turns out to be smaller in Class B and Class C, which indicates that
CDRs become more and more biased in estimating the total travel distance when CDR
ratio drops. For subscribers in Class D, their CDRs on average underestimate the total
travel distance by 84.6%. Figure 6 also suggests that the variation of average DCDR

becomes larger when the value of Dcomplete grows. This pattern of heteroscedasticity is
relatively easy to understand under the context of human travel: if one’s daily travel
distance is longer, the range of estimated travel distance based on his/her CDRs is
expected to be wider. Another possible reason is that the size of subscribers drops
rapidly as the total travel distance increases. It also could result in a wider range of
average DCDR.

4.2. Radius of gyration

The radius of gyration is one of the most frequently used measures of activity space. It is
defined as the root mean squared distance between a set of visited locations up to time
t and the center of mass:

Table 3. Correlation between the total travel distance (complete
group) and the average total travel distance (CDR group).
Class Pearson correlation Spearman correlation

A 0.941 0.960
B 0.987 0.992
C 0.989 0.994
D 0.955 0.976

Table 4. Linear regression results between the complete group and the
CDR group for the total travel distance.
Class Regression coefficient (β) Level of underestimation (1� β)%

A 0.647 35.3
B 0.529 47.1
C 0.401 59.9
D 0.154 84.6
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rag tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nac tð Þ
Xnac
i¼1

rai
!� racm

�!� �2

vuut ; (1)

where rai
!

represents the i ¼ 1; . . . ; nac tð Þ location of subscriber a and racm
�! ¼ 1

nac tð Þ
Pnac
i¼1

rci
!

defines the center of mass (González et al. 2008). The radius of gyration reflects the
range of activity space, typically around the center of home and work locations for
commuters.

Similar to Section 4.1, we compute two values of the radius of gyration for each
subscriber based on the CDR group and the complete group, denoted as RCDR and
Rcomplete, respectively. Figure 7 uses the horizontal axis to represent the complete group
with a 0.1-km bandwidth and the vertical axis to represent the average RCDR of sub-
scribers in the same 0.1-km bin. Again, the consistency between two groups can be
inferred by the closeness of data points to the diagonal. Note that unlike the total travel
distance, RCDR could be larger than Rcomplete if CDR footprints spread more widely than
non-CDR records.

The effectiveness of CDRs in estimating radius of gyration is noteworthy. First, for
Classes A, B, and C, RCDR are strongly correlated with Rcomplete (Table 5). However, both
Pearson correlation coefficient and Spearman correlation coefficient show a significant
drop in Class D, although they still suggest a positive correlation. In addition, for Class D
subscribers whose Rcomplete is larger than 25 km, their average values of RCDR are often
zero or very close to zero. Therefore, CDRs might significantly underestimate the radius

Figure 7. Radius of gyration (complete group) vs. average radius of gyration (CDR group).
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of gyration of people who commute over long distance and rarely use mobile phone.
Second, Figure 7 also reveals a pattern of heteroscedasticity: the range of estimated
radius of gyration based on CDRs is supposed to be wider if one’s radius of gyration
derived from the complete group grows. From Class A to Class D, such a pattern of
heteroscedasticity turns out to be more obvious as CDRs become a smaller part of one’s
footprints.

By fitting a linear regression model to each class we can quantify the effectiveness of
CDRs for estimating this mobility indicator. The regression coefficient is very high for
Class A and Class B (Table 6). It suggests that CDRs could depict the range of daily travel
very well for subscribers whose 50% or more footprints are collected from phone
communication events. Adding other non-CDR footprints makes very limited difference
on the derived radius of gyration. For subscribers in Class C, CDRs on average under-
estimate their radius of gyration by 20.6%. Depending on specific applications, this
margin of error may be acceptable. However, the small regression coefficient (0.491)
in Class D indicates that CDRs fail to provide a good estimate for subscribers whose
fraction of CDRs is below 25%. Many subscribers in this group engage none, or very few
phone communications in a day. Others who make some use of mobile phones also
travel a lot and leave numerous digital footprints (RU event). As a result, this group of
CDRs remains questionable for deriving daily activity space.

4.3. Movement entropy

The movement entropy measures the heterogeneity of visitation patterns (Song et al.
2010a, Yuan et al. 2012). It can be calculated using the following equation:

E ¼ �
Xn
i¼1

pilog2pi; (2)

where n is the number of distinct locations (i.e., cell towers) visited by a subscriber and pi
is the probability that location i is visited. Mathematically, the value of movement

Table 5. Correlation between the radius of gyration (complete
group) and the average radius of gyration (CDR group).
Class Pearson correlation Spearman correlation

A 0.980 0.982
B 0.936 0.939
C 0.860 0.882
D 0.532 0.521

Table 6. Linear regression results between the complete group and the CDR group
for the radius of gyration.
Class Regression coefficient (β) Level of underestimation (1� β)%

A 0.940 6.0
B 0.887 11.3
C 0.794 20.6
D 0.491 50.9
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entropy grows with a more heterogeneous visitation pattern. Consider the following
examples:

(1) If a subscriber stays at a single location, E ¼ � 1:0� log21:0ð Þ ¼ 0;
(2) If a subscriber visits Location A one time and Location B four times,

E ¼ � 0:2� log20:2þ 0:8� log20:8ð Þ � 0:72;
(3) If a subscriber visits Location A five times and Location B five times,

E ¼ � 0:5� log20:5þ 0:5� log20:5ð Þ ¼ 1;
(4) If a subscriber visits Locations A, B, C, and D, two times each, E ¼

� 0:25� log20:25þ 0:25� log20:25þ 0:25ð �log20:25þ 0:25� log20:25Þ ¼ 2.

For this mobility indicator, ECDR and Ecomplete are calculated for each subscriber. The
correlation coefficients all indicate a very positive correlation between ECDR and Ecomplete

(Table 7). Unlike the other two selected mobility indicators, we cannot identify an
evident pattern of heteroscedasticity when Ecomplete < 5 (Figure 8). We find that CDRs
can estimate the movement entropy very well for subscribers in Class A given the high
regression coefficient (0.876, see Table 8). This coefficient declines for Class B and Class
C, which implies that as the CDR ratio decreases, it is more likely that some non-CDR
footprints are collected at other visited locations where subscribers do not engage
phone communications. This is likely the most reasonable explanation for the low
regression coefficient (0.328) associated with Class D. Apparently, CDRs underestimate
the movement entropy by far (67.2%) for subscribers in Class D. Moreover, data points in
Class D suggest some abnormal drops of average ECDR when Ecomplete > 6 (Figure 8),
which is not the case for the other three classes. We believe that it is also caused by a
low likelihood of making phone communications at some visited locations.

In this section, we evaluate the representativeness of CDRs based on mobility
indicators that measure activity space from three aspects: distance, range, and hetero-
geneity. We reveal some important findings by answering ‘whether CDRs can provide a
good estimate of individual mobility patterns’. We have indicated that the answer is not
simply yes or no. Perhaps the question should instead be phrased as, ‘how good are
CDRs in providing a good estimate of individual mobility patterns’. According to our

Table 7. Correlation between movement entropy (complete group) and
average movement entropy (CDR group).
Class Pearson correlation Spearman correlation

A 0.998 0.999
B 0.996 0.999
C 0.991 0.997
D 0.900 0.934

Table 8. Linear regression results between the complete group and the
CDR group for movement entropy.
Class Regression coefficient (β) Level of underestimation (1� β) (%)

A 0.876 12.4
B 0.751 24.9
C 0.625 37.5
D 0.328 67.2
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analysis, the effectiveness of CDRs in individual mobility study depends on the research
question and the mobility measure selected to address that question. To estimate radius
of gyration, CDRs in most cases are probably good enough for subscribers who (1) make
at least some phone communications throughout the day, and (2) travel within normal
daily activity range (e.g., less than 25 km in Shenzhen). On the contrary, one needs to be
cautious when using CDRs to study other problems such as travel distance or hetero-
geneity of human mobility. To a large extent, the validity of analysis result is subject to
how actively subscribers engage in phone communications. Therefore, in many cases we
may bear the risk of underestimating mobility indicators of interest.

5. Collective human mobility

Many researchers approach human mobility study from a collective perspective and pay
attention to data aggregated from the individual level. In this section, we evaluate the
representativeness of CDRs from this perspective. The distance decay effect and urban
community detection are selected for the evaluation because they have been examined
in several CDR-based human mobility studies (e.g., González et al. 2008, Walsh and
Pozdnoukhov 2011, Gao et al. 2013).

5.1. Distance decay effect

The existing studies reveal that human movements can be modeled by a Lévy flight
(Brockmann et al. 2006), while the power law distribution of displacements is an

Figure 8. Movement entropy (complete group) vs. average movement entropy (CDR group).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15

D
ow

nl
oa

de
d 

by
 [

Y
an

g 
X

u]
 a

t 2
0:

38
 2

6 
Ja

nu
ar

y 
20

16
 



indication of the distance decay effect (Liu et al. 2012, Gao et al. 2013). The notion of
distance decay has a close relationship with The First Law of Geography: ‘everything is
related to everything else, but near things are more related than distant things’ (Tobler
1970, p. 236). Although highly developed urban areas offer various means of transporta-
tion, human activity remains to be restricted by a number of factors such as distance and
accessibility. Many researchers argue that the ‘death of distance’ hypothesis is premature
even with today’s technologies (Wang et al. 2003, Rietveld and Vickerman 2004).

Massive CDR data offer some new opportunities to validate and/or adjust our under-
standing of the frictional effect of distance. For instance, González et al. (2008) and Gao
et al. (2013) report distance decay parameters of 1.75 and 1.60, respectively. However, as
discussed earlier, CDRs are generated only upon phone communication activities and
most people do not use their mobile phone at all places they visit. Therefore, displace-
ments between CDR footprints can only represent movements between phone commu-
nications. Taking advantages of the various event types recorded in the mobile phone
location dataset used in this study, we are able to compare the distance decay effect
observed from CDR data against that derived from the complete set of footprints.

We derive 4,992,719 displacements from the CDR group and 27,686,129 displace-
ments from the complete group. Figure 9 shows cumulative distribution function (CDF)
curves of these two groups. The cumulative distribution curves indicate that most
displacements are short, with about 90% displacements in the CDR group below 5 km
and roughly 90% of displacements in the complete group under 2.5 km. These displace-
ments can be approximated by a power law distribution in the following form:

P dð Þ / dβ; (3)

where β is the distance decay parameter (Gao et al. 2013). A large value of β indicates
that distance is a strong deterrent to interaction, whereas a small value of β implies a
relatively weak influence of distance.

Figure 9. Cumulative distribution function (CDF) of displacements.
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Figure 10 shows the probability density function (PDF) in log-log scale and the fitted
power law distribution. The fitted decay parameters are β1 ¼ 1:79 for the CDR group
and β2 ¼ 1:98 for the complete group. Note that β1 is very close to 1.75 reported by
González et al. (2008), which indicates that a similar mechanism that drives the frictional
effect of distance is captured. As we would expect based on the CDF plot in Figure 9, β2
should be larger than β1 since the complete group captures more short-distance
displacements. For this reason, we believe that CDR data slightly underestimate the
distance decay effect in Shenzhen. A possible explanation is related to the habit of
mobile phone usage that most people do not contact others by phone or text at every
visited location. On average, displacements between phone calls (or text messages) are
longer than those between consecutive locations people visit. Although it is true that
many long-distance trips may be missing in the CDR database, the amount of short-
distance trips CDRs do not capture could be substantially larger, which results in a less
steep curve on the CDF plot for x < 20 km and a smaller value of distance decay
parameter.

5.2. Community detection

Various types of network (e.g., social network) in a city often establish a structure of
communities that are more tightly connected internally and structurally distinct from
others (Girvan and Newman 2002). Identifying communities in a network can help us
understand the internal structure of a city that is shaped by human interactions as

Figure 10. Probability density function (PDF) and the fitted power law distribution. The green line
and red line represent the probability distribution of the displacements derived from the CDR group
and the complete group, respectively. The dashed green line and the dashed red line are the fitted
power law distributions for the CDR group and the complete group, with a decay parameter of 1.79
and 1.98, respectively.
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opposed to pre-defined administrative boundaries. Cell towers operated by MNOs
can be considered as nodes in a large cellular network. In recent years, some urban
dynamics studies have used CDR data to detect urban communities (e.g., Walsh and
Pozdnoukhov 2011, Gao et al. 2013). It again is important to examine if digital
footprints based on phone communication logs introduce a bias to the outcome of
community detection.

Community detection aims at partitioning a network into communities that consist of
densely connected nodes. The quality of partition is often evaluated by modularity. In a
weighted network, it is defined as:

Q ¼ 1
2m

X
i;j

½Aij � kikj
2m

�δ ci; cj
� �

; (4)

where Aij denotes the weight of edge between two nodes i and j. ki ¼
P
j
Aij represents

the sum of weight of all edges towards node i. ci denotes the community to which node
i is assigned. δ ci; cj

� �
has a value of 1 if node i and node j belong to the same

community and a value of 0 otherwise. m is half of the total edge weight in the entire
network and m ¼ 1

2

P
i;j
Aij (Blondel et al. 2008). Many algorithms have been proposed to

improve partition quality by maximizing modularity (e.g., Clauset et al. 2004, Newman
2004).

Edges of a cellular network are usually weighted by the intensity of human interac-
tion (e.g., volume of population flow). Given the size of our network (33,044 cell towers),
we adopt the Louvain method (Blondel et al. 2008) which takes a heuristic approach to
optimize modularity of a large network efficiently. Using population movement volumes
among all cell towers in the entire day, the Louvain method is used to detect urban
communities based on the CDR group and the complete group, respectively. Table 9
shows the result of community detection results with high modularity scores. For
visualization purpose, we also create a Voronoi diagram based on cell tower locations
and assign a unique color to Voronoi cells in the same community.

Figure 11 shows the 20 detected communities using data from the CDR group. At the
urban scale, the following findings of communities derived from CDR data are
noteworthy:

(1) Natural barriers play an important role in community separation. Two examples in
Shanghai include the Yangtze River and the Huangpu River. The former separates
the three islands of Chongming County from the other areas of Shanghai, while
the latter divides Pudong and Puxi. As suggested by the results, although bridges
and ferries provide means to transport people from one side to another, naturally
separated regions remain sparsely connected in terms of the intensity of human
interaction.

Table 9. Summary of community detection results.
Group No. of subscribers Edges No. of detected communities Modularity

CDR 811,330 1,724,465 19 0.754
Complete 1,185,383 2,707,959 21 0.809
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(2) In many regions, administrative boundaries appear to possess a similar influence
on movements as natural barriers do given that the boundaries of identified
communities match very well with the administrative boundaries. It implies that
human movements within the administrative districts are much more intense
than cross-boundary movements. In other words, CDRs reveal that human inter-
actions in Shanghai are largely affected by political boundaries.

(3) Communities detected in Lujiazui area and Puxi, situated at the east bank and
west bank of the Huangpu River (Figure 2), cover much smaller areas than other
communities do. Compared with suburban districts (e.g., Jinshan, Songjiang, etc.),
land use patterns in Lujiazui and Puxi, the most developed and most populated
region in Shanghai, are highly mixed. Therefore, typical activities in this region do
not require long-distance travel, resulting in smaller activity space on a workday.

Using data from the complete group, two more communities are identified. While the
overall detection result resembles the one derived from the CDR group in terms of the
number of communities and their boundaries, we highlight and discuss some major
differences:

Figure 11. Detected communities based on the CDR group.
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(1) Natural barriers are not a major factor in community separation for the complete
group. For instance, Figure 12 shows that Region A, on the west bank of the
Yangtze River, is closely connected to the three islands of the Chongming County
(Chongming, Changxing, Hengsha, see Figure 12). Apparently, human movements
recorded in the complete group better capture population interactions between
Region A and the Changxing Island through ferries and a major arterial called the
Changjiang Tunnel. Serving as critical components of the Shanghai Port, indus-
tries related to port operation (e.g., container ports, shipyards, shipping compa-
nies) are agglomerated in Region A and Changxing Island. Region B, which covers
both sides of the Huangpu River in the southern part of the downtown area,
presents another example. The Nanpu Bridge, one of the main bridges over the
Huangpu River, connects the two sides of the river to overcome the natural
barrier. This observation is not present among the communities derived from
the CDR group since a large portion of people who travel between two regions
separated by natural barriers tend to use their mobile phones more frequently
only in one of the regions.

(2) Similar to natural barriers, political boundaries turn out to be less important in
community separation based on the complete group. For example, with CDRs,
communities in southern Shanghai are divided by administrative boundaries of

Figure 12. Detected communities based on the complete group.
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Qingpu, Songjiang, Minhang, Jinshan, and Fengxian. With the complete group,
the community in Minhang clearly crosses the administrative boundaries. Similar
examples can be found in other places (e.g., the communities that cross Qingpu
and Songjiang, Minhang and Pudong, Jiading, Baoshan, etc.). This finding sug-
gests that the influence of administrative boundaries on interaction patterns may
be exaggerated in CDR data. Similar to the previous finding, we speculate the
main reason to be the biased spatial distribution of calling/texting activities. For
many subscribers, their primary phone communication activities may be limited
to certain places, probably within the same administrative district.

(3) By conducting a close visual inspection, we notice that in most cases communities
have clear boundaries and they are mutually exclusive. Voronoi cells that belong
to one community seldom appear inside the territory of another community.
However, a number of exceptions are observed at different locations of the city.
Data from the complete group suggest that a large percentage of residents travel
to work outside the boundary of the community where their home is located,
making the connection between the residential area and the destination commu-
nity closer (see Figure 13 for an example). On the contrary, communities detected
from CDR data are more mutually exclusive, with very few Voronoi cells found
inside a different community. This finding further confirms that CDRs only partially
reflect the intensity of human interactions over space. Tight connections across
adjacent neighborhoods may not be detected from CDR data.

In this section, we take a collective approach to compare digital footprints from the CDR
group and the complete group. Based on the aggregate spatial displacements, we

Figure 13. Decreased level of mutual exclusiveness in community detection using data from the
complete group. (a) Many Voronoi cells are located outside the community boundary. (b) Taking the
Voronoi cell circled in the left figure as an example, we notice that most Voronoi cells outside the
community boundary cover high-density residential area.
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investigate the distance decay effect and indicate how CDR data could lead to a biased
understanding of urban dynamics. We also use a community detection method to
identify the spatial structure of Shanghai in terms of interaction patterns. Although
the results from the CDR group and the complete group do not differ significantly,
some important differences regarding how urban areas are separated by human inter-
actions are identified. Hence, we reach a conclusion that aggregate urban interaction
patterns we uncover from CDR data also could be biased and misleading.

6. Conclusion and discussion

CDRs have been considered as a useful data source in support of human mobility research.
However, given the uneven distribution of people’s communication activities in space and
over time, can we rely on CDR data to understand human movement and interaction
patterns? This study takes the first step to assess the bias of CDR data for human mobility
research. Based on our findings, we cannot answer the question with a simple yes or a no.
First, it depends on what research question we want to answer. For instance, CDRs tend to
underestimatemobility indicators such as the total distance and themovement entropy. On
the contrary, for other indicators such as individual activity range, CDRs may be able to
provide reasonable estimates. Second, the effectiveness of CDRs is closely related to the
habit of mobile phone usage. How frequently one uses mobile phone to contact others and
when and where those communications occur largely determine the representativeness of
CDRs to reflect truemobility characteristics. In summary, we believe that the event-triggered
nature of CDR data does introduce some biases to humanmobility research andwe suggest
researchers to use CDR data with caution.

We do not attempt to deny the value of CDRs in human mobility research. Our
objective is to have a fair assessment of what CDR data can and cannot do well in
support of human mobility research. At present, CDRs remain as a useful data source
with its wide coverage of population in many parts of the world and relatively low extra
costs to collect such data. No datasets are perfect. As far as we understand the strengths
and limitations of CDR data, we can gain many insights into human behaviors from CDR
data. In the meantime, it is worth thinking about potential approaches to reduce/correct
the biases embedded in CDR data. For instance, spatial and temporal interpolation of
CDR footprints could possibly help us gain insights into data biases and develop
solutions to address the issue. Applying post-hoc adjustments could be another promis-
ing workaround. In Section 4 of this article, we use linear regression to assess to what
degree CDRs underestimate particular mobility indicators. The regression coefficient
could be used to adjust the mobility indicator of interest. For instance, if we know
CDRs normally lead to a 50% underestimation on the movement entropy of people who
rarely use mobile phone, we can double the estimated movement entropy values
accordingly to improve the accuracy level. However, our findings may or may not be
applicable to other cities due to different urban environments and habits of mobile
phone usage. A thorough study of local mobile phone usage patterns is required for
post-hoc adjustments.

This article presents a particular way of assessing the validity of using CDR data for human
mobility research. Future research could develop additional approaches/methods to analyze
CDR data in a systematic manner. Knowledge of the effectiveness of CDRs in answering
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different research questions can be beneficial to many application fields ranging from urban
design, transportation planning to air pollution and smart cities in this big data era.
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