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Abstract 
One key factor in the improved understanding of earth system science is the development and 
improvement of high fidelity models. Along with the deeper understanding of biogeophysical and 
biogeochemical processes, the software complexity of those earth system models becomes a barrier for 
further rapid model improvements and validation. In this paper, we present our experience on better 
understanding the Community Land Model (CLM) within an earth system modelling framework. 
First, we give an overview of the software system of the global offline CLM simulation. Second, we 
present our approach to better understand the CLM software structure and data structure using 
advanced software tools. After that, we focus on the practical issues related to CLM computational 
performance and individual ecosystem function. Since better software engineering practices are much 
needed for general scientific software systems, we hope those considerations can be beneficial to 
many other modeling research programs involving multiscale system dynamics.  
 
Keywords: Legacy Scientific Software Application, Community Earth System Model, Community Land Model, 
Global Variables, High Performance Computing, Software Profiling and Debugging 

1 Introduction 
Over the past several decades, researchers have made significant progress in developing high 

fidelity earth system models to advance our understanding on the Earth systems, and to improve our 
capability of better projecting future scenarios [1]. The Community Earth System Model (CESM) is a 
flagship model for US Department of Energy’s climate and environmental research. Within CESM, 
the Community Land Model (CLM) is the active component to simulate surface energy, water, carbon, 
and nitrogen fluxes and state variables for both vegetated and non-vegetated land surfaces [2].  The 
whole CESM simulation is reconfigurable, which provides a great flexibility to the community to 
design their own computational experiments. In our study, CESM has been configured into an offline 
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global community land model simulation, which includes a data atmosphere model, an active land 
model and stub models for ocean, ice and glacier. Scientifically, this configuration uses historical 
climate forcing to drive active land component simulation, and provides unique capability to verify 
and calibrate land modeling activities with observational datasets. 

 
Considering the general interests of ICCS, we focus on several software engineering approaches to 

better understand the offline Community Land Model system within the unified Community Earth 
System Model framework.  First, we review the overall software system of the global offline 
Community Land Model simulation. Second, we present our approach to better understand the 
software structure and data structure using advanced software tools. After that, we focus on the issues 
related to scientific software performance, including both computational performance and most 
important, functional level performance. Due to the ultimate scientific goals and the nature of 
scientific modelers, the development of scientific software systems differs significantly from the 
development of other software systems, such as business information systems. We believe the 
software tools and scientific approaches described in this paper can be beneficial to many other 
research programs involving large scale, legacy modeling systems. 

2 Overall Configuration of the Community Land Model 
Within the CESM framework, the CLM is designed to understand how natural and human changes 

in ecosystems affect the climate. The model represents several aspects of the land surface including 
surface heterogeneity and consists of submodels related to land biogeophysics, the hydrological cycle, 
biogeochemistry, and ecosystem dynamics. The software system of the global offline CLM includes 
physical earth system components, such as the CLM, data atmosphere (a proxy atmosphere model, 
which reads in atmospheric forcings to drive the CLM), stub ocean, stub ice and stub glacier. It 
contains an application driver to configure the parallel computing environment and the whole 
simulation system (physical earth system components and flux coupler between those components). It 
also includes several shared software modules and utilities, such as a flux coupler and its APIs to 
individual earth system component, parallel IO and performance profiling libraries [3]. The schematic 
diagram of the CLM software structure is shown in Figure 1. It is clear that the CLM simulation is 
highly dependent on other components, such as the flux coupler and the data atmosphere. 

 
Figure 1: Software configuration of the CLM simulation that shows the strong coupling of the 

earth system components.  
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3 Software Structure of the CLM 

3.1 The CLM Call Graph 
The whole CLM modeling system consists of more than 1800 source files and over 350,000 lines 

of source code. Call-graph analysis is a widely used tool for understanding the interactions between 
different parts of an application. Different tools exist for both static and dynamic call path generation 
and analysis.  The well-established gprof (and later improved approaches) tool records profiling 
information at runtime and presents users with a textual representation of the dynamically recorded 
call paths and their runtimes [4, 5]. The Vampir trace visualization tool also offers a textual 
representation of call graphs extracted from trace data [6]. Moreover, the Scalasca toolset puts a strong 
focus on call-path profiling [7]. However, none of these tools offer a graphical representation of the 
call graph to aid the user in gaining a complete overview of the application. In [8], the authors present 
prototypes that display dynamic relations between code parts in graphical displays, so-called 
Execution Murals. However, these displays do not include any information about the performance or 
runtime of the individual components. Furthermore, in contrast to the dynamic call graph generation, 
static call graph generation tools analyze the source code of a program to extract procedure call 
relations [9, 10]. Also due to their static nature, those tools cannot incorporate any information on the 
performance and runtime of the components. 

In our study, we use advanced profiling and tracing software, the Vampir framework [11] and the 
Tuning and Analysis Utilities (TAU) [12], to collect necessary information for constructing the CLM 
call graph.  The Vampir framework is being developed at the Center for Information Technology and 
High Performance Computing (ZIH) at Dresden University of Technology. It consists of the open 
source instrumentation and measurement tool VampirTrace (for recording profiling and application 
trace information) and the commercial Vampir (for trace visualization and analysis). TAU is an open 
source profiling and tracing toolkit for performance analysis of parallel programs that is being 
developed at the University of Oregon. Nowadays, many advanced compilers (such as the Cray 
compilers) provide capabilities for automatic compiler instrumentation. However, this straightforward 
approach produces too much trace data and the overhead is too high to make a meaningful statement 
on the performance of the CLM. Therefore, we use the TAU instrumentation within VampirTrace to 
prevent the complete source files from being instrumented. More detailed information on how to 
configure the Vampir framework for this purpose can be found in a previous paper [13].  
 

The Vampir framework provides functionality to generate call graphs once the trace information is 
collected. This graph is limited to textual representation inside of Vampir. Herein, we present a new 
way to enable users to study the runtime structure of the CLM call graph. A Python script was 
developed to build the CLM call graph in a standard graph format, such as the Graph Modeling 
Language (GML). The trace is read through the OTF Python API that is modeled after the original C 
programming interface, which uses a callback mechanism to deliver definitions and events to the 
reader. The script extracts only the relevant information, e.g., function and process definitions and 
enter/exit events, from the trace data and modifies the graph on every event. For managing the graphs, 
the Python networkx package is employed for easy and efficient graph operations such as inserting 
nodes and edges and modifying their weights. A new node is inserted every time a new function is 
encountered. A new edge is inserted for each call into a subroutine. The exclusive function runtime is 
added to the weight of a node and the weight of the corresponding edge is incremented. We used 
Gephi (www.gephi.org), a multi-platform tool, for interactive graph visualization and exploration. 
Gephi is especially designed to handle large graphs and supports multiple algorithms for node-
placement and metric computation. Moreover, Gephi has a modular design that allows for easy 
extension using modules, many of which are provided by an active user community.  
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Figure 2 The software structure of the CLM. Each circle represents an individual subroutine, the 
area of each circle shows the time spent on the subroutine. Each directed edge indicates the procedure 

of a subroutine invocation with the weight of the arrows linearly representing the number of 
invocations. The top graph shows the subroutines related to the CLM simulation within the CESM 

framework. It is obvious that the software overhead of CLM is significant, such as MPI, IO and time 
management is significant. The green colored part in the top graphs is the actual CLM model. The 
bottom graph represents all the submodels within CLM, which includes Canopy fluxes, Carbon-

Nitrogen Cycle, Hydrology, Urban, etc.) 
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3.2 Key Data Structure of the CLM Landscape Surface 
Landscape surface is the basic data structure for CLM model development and software 

engineering. Inside the CLM, the land surface is represented by globally accessible, hierarchical, 
derived data structures. The landscape surface is represented by four layers of derived data structures: 
gridcell, landunit, column, as well as Plant Functional Type (PFTs). A gridcell contains landunits, 
which represent the geomorphical feature of the landscape surface. The primary landunit types include 
glacier, lake, wetland, urban, and vegetated portion. Each landunit contains different types of columns, 
such as soil, lake, and wetland. The vegetated portion of a gridcell is represented as soil column, 
which is further divided into patches of PFTs, each with its own leaf and stem area index and canopy 
height. All layers of the landscape surface data structure (such as gridcell, landunit, column, and PFT) 
are declared as globally accessible datatypes, which can be modified by a variety of ecosystem 
functions.  

In our study, we use a debugger, Allinea DDT (www.allinea.com), to better understand the 
hierarchical data structure. Allinea DDT is a commercial debugger developed by Allinea Software of 
Warwick, United Kingdom, primarily used for debugging parallel MPI or OpenMP programs. As most 
debugger, DDT offers sophisticated functions such as running a program step by step (single-stepping) 
and stopping (breaking). It also features a complete memory debugging tool which can be used to 
detect memory leaks, or reading and writing beyond the bounds of arrays.  Using DDT, it is easy to 
understand the memory allocation of those hierarchical data structures. For example, we can launch 
the CLM on a single computing node (with 16 CPUs). Within DDT, we can see how the 
computational domain has been partitioned across multiple MPI processes. In the CLM, each gridcell, 
landunit, soil column, and PFT has a unique ID number. Those multiple level ID numbers are used to 
create the mapping indexes between those hierarchical landscape surface data structures. The 
computational domain partition depends on the total number of gridcells across the whole landscape. 
A static domain partitioning scheme is implemented in the CLM, so the number of PFTs, soil 
columns, landunits, and gridcells are fixed on each process during the simulation.  Figure 3 shows the 
CLM data structure in the memory. Each layer of the data structure contains two groups of variables: 
1) mapping indexes to represent the spatial connections between those four layers: gridcell, landunit, 
column, and PFT; 2) derived datatype to store physical data associated with each layer including 
energy, water, momentum, flux etc. 

 
 

 
Figure 3: Hierarchical, derived data structure to represent the heterogeneity of the CLM landscape 

surface. Left graph shows the conceptual data layout. Right graph shows the schematic presentation of 
the CLM landscape surface data structure view in DDT 
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4 Computational Characteristics of the CLM 
In this section, we focus on the computational performance of the CLM software system. The 

computational platform used in this research is the Cray XT6 Titan supercomputer at the National 
Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL). Titan uses 
16-core AMD Opteron central processing units (CPUs) in conjunction with Nvidia Tesla K20X GPUs. 
It uses 18,688 CPUs paired with an equal number of graphics processing units (GPUs) to perform at a 
theoretical peak of 27 PetaFLOPS. A three month simulation is designed to investigate the overall 
computation and communication ratio and the computational intensity. We use 240 cores (with MPI 
processes) for the CLM, data atmospheric model and the flux coupler. The stubs for ocean, ice and 
glacier are executed on one core. Some simulation characteristics are shown in Figure 4. The top graph 
in Figure 4 shows the general pattern of the CLM simulation on the first 10 processes of the total 240 
processes. The green color represents the execution of user application functions, the red color 
represents MPI activities, and the yellow color represents I/O activities. There is a clear 
synchronization pattern during the simulation, caused by the I/O and flux communication between 
CLM and the coupler. The bottom left graph is a pie chart to demonstrate the ratio between 
computation (application), communication (MPI), and others (I/O, and Vampir overhead). The chart 
shows that the computation takes around 51% of the time, and around 48 % of the time is spent on 
communication. The blue color represents less than 1% (percentage data not shown).  The bottom 
right graph shows the computational intensity of CLM, which was determined using PAPI 
(Performance Application Programming Interface, icl.cs.utk.edu/projects/papi) on one process (#10). 
The peak Floating-point Operations Per Second (FLOPS) is around 200 million FLOPS and mostly 
comes from the flux calculation related to the coupler. The average performance rate is around 100 
million FLOPS. It is obvious that the current CLM presents a low computation intensity and most 
important. Those properties are important parts of the ongoing software engineering plan for the CLM. 

 

 

 
 

 
Figure 4: Computational characteristics of the global offline CLM simulation. Top: Computation 
and communication patterns, Bottom left: Communication/Computation ratio, Bottom right: 

Computational intensity in FLOPS using PAPI 
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5 Better Understanding of CLM Ecosystem Function 
As a scientific application, it is vital to get the fundamental processes correct in the CLM 

ecosystem simulations [15,16]. Likewise it is important to investigate new theories of ecosystem 
function and new process representations within the context of ecosystem sciences. Herein, we present 
our efforts to understand the CLM individual ecosystem functions via the investigation of scientific 
context and memory access patterns.  

5.1 Investigation of Scientific Context of CLM Ecosystem Function 
As mentioned in the previous section, the CLM contains several submodels related to land 

biogeophysics, the hydrologic cycle, biogeochemistry, and ecosystem dynamics. Within each 
submodel, the software is generally organized by software modules or subroutines based on natural 
system functions, for example, radiative fluxes, carbon-nitrogen cycles, momentum and heat flux, soil 
temperature, hydrology, and photosynthesis, etc. It is generally not easy to develop rapid knowledge 
on scientific context around specific CLM functions.  The landscape surface is the key data structure 
for the CLM model. After the CLM model initialization, a subset of the landscape surface is allocated 
in the memory of each computing process. The majority of data arrays and derived datatypes within 
the hierarchical CLM landscape surface data structure are declared as globally accessible. Therefore, 
for each individual CLM function (module or subroutines), there are two groups of input and output 
parameters. In this article, for the clarification, we call all the parameters directly defined by individual 
function itself as explicit function parameters, and parameters which are embedded within the globally 
accessible landscape surface data structure as implicit function parameters.   

 
Due to the complexity of the CLM software and automatically machine configuration, it usually 

takes almost half an hour to rebuild the software system completely and it is not straightforward to 
investigate the runtime values of those global parameters using the traditional print functions. 
Therefore, debuggers, such as the Allinea DDT, can offer great assistance to better understand the 
scientific context of function parameters (both explicit and implicit). For example, using the debugger, 
we can easily browse and visualize the values of both explicit and implicit function parameters of any 
target CLM function. It is also very valuable to have basic statistical information (range, mean, 
medium, deviation, etc.) of those parameters to determine the data quality in the scientific context. In 
our study, we also developed a set of scripts to extract and annotate the interrelationships among key 
CLM ecosystem function calls, their subroutine explicit parameters and implicit parameters (global 
variables). Based on that information, we can construct a graph, which summarizes the 
interrelationships among all the function calls, subroutine explicit parameters and global variables. 
The structure of the graph of CanopyFluxes submodel is shown in Figure 5. In this figure, the blue 
circles represent the ecosystem function calls, such as Stomata, FrictionVelocity and CanopyFlux, etc. 
The green circles represent the explicit parameters associated with each function, which can be further 
grouped as inputs and outputs. The yellow circles represents the implicit parameters  of each 
ecosystem functions. Implicit parameters (global variables) are further grouped into three categories: 
read_only, modified, and write_only. Read_only are global variables used as input parameters only. 
Modified are global variables whose value is changed by the subroutine and their values depend on 
their values at previous timestep. Write_only are global variables whose value is changed by the 
subroutine, but their values are independent of their values at previous timestep.  Interestingly, we 
found that there are several global variables which are defined as explicit parameters of function calls. 
Moreover, we also found dead-code (fragments of previous implementations), local data pointer are 
defined for easy access to global variables but never used during the routine. Red circles are used to 
show all of those global variables in the graph. The visual structure representation of CLM ecosystem 
functions is an invaluable tool for CLM model developers to understand the CLM code.  
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Figure 5: Graph visualization of functional calls (blue) as well as their explicit parameters (green) 
and implicit parameters/global variable (yellow) within CanopyFluxes submodel. 

5.2 Analyzing Memory Access Patterns of CLM Function 
To analyze CLM’s global data-structure access patterns we used the Gleipnir tracing tool [17] built 

as a plug-in tool for the Valgrind framework (www.valgrind.org). The Gleipnir tool allows the user to 
trace an application’s data accesses and map them to internal structures, or manually inserted 
identifiers. Gleipnir’s unique feature is tracing access patterns at various program granularities (e.g. 
per process, thread, function, local, global, and heap data structures). Users can use a number of client 
interface calls, provided by Gleipnir, to tune the instrumentation detail at runtime. External tools 
supplement the information by visualizing the traces. We can also use the traces for cache simulators 
to relate data access patterns with cache memory performance. To understand data-structure access 
pattern variations we traced the CLM application’s land component focusing on the CanopyFluxes 
module’s Stomata function within CLM v.4.0. Our tracing focused on explicit structures because they 
are the most relevant components of the code. Figure 6 shows an example graph on a single process. 
The X-axis is the number of executed instructions. We chose a granularity of 1 million instructions per 
tic, thus every bar on the X-axis represents 1 million executed instructions. The Y-axis is the relative 
number of data-structure references for every million instructions. The structures are color-coded, 
which allows us to observe data-structure access pattern during execution. In this example we can 
observe that most structures are uniformly accessed throughout the function’s execution. By applying 
similar technique to each function, we can establish a benchmark dataset on data access and utilization 
of each CLM ecosystem functions within current release of CLM. Because there is an ongoing debate  
within the CLM community on adapting better software data structure to accommodate the mission 
requirement related to hydrological modeling and vegetation dynamics, etc., comparing access 
patterns between algorithm changes or CLM updates will help in determining potential access 
irregularities or unintended behavior for future CLM developments.  
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Figure 6: An example of dynamic structure references of function Stomata within CLM  

6 Conclusions and Future Work 
In this paper, we presented our experience in using advanced software engineering approaches, 

such as software profiling and debugging, to better understand the Community Land Model system 
within the unified Community Earth System Modeling framework. From the software design 
perspective, nowadays we have encountered serious challenges in the scientific software applications 
development due to rapid model development requirements and radical shifts in computing hardware 
architecture. We are in a great demand of advanced software engineering tools to better understand the 
fundamentals of software structure and data structure of legacy scientific software applications. A lot 
of effort is put into the investigation of scientific software performance. In this article, we also 
presented our efforts to investigate the scientific context as well as the memory access patterns of 
global CLM landscape surfaces variables associated with individual ecosystem function. The scientific 
(ecosystem) functionality, which incorporates the state-of-the-science understating of nature and 
human system, is the most significant and vital fundamentals of scientific software system. We believe 
that our experience in adapting software engineering approaches for a legacy scientific software 
system described in this paper can be beneficial to many other research programs involving large 
scale, legacy modeling systems.  Future work will involve with software call-graph generation for 
each new CLM release as well as graph-based software structure comparison and analysis. The 
dynamic call-graph generation will be enhanced and extended to better understand the various 
sequences of function calls which are influence by different environmental conditions. We will 
investigate possible ways for better visualize dynamic runtime behaviours. We are also in the process 
of establishing a benchmark database which contains the computation characteristics, scientific 
context, as well as the global data access patterns of each CLM’s ecosystem function .This 
information will be further integrated into our CLM functional testing platform [15] to serve broad 
scientific communities.  
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